

VRF Air Conditioning System

INV2 DC Inverter Multi VRF System with its high-efficient inverter compressors has four exciting features which are different from those found on traditional inverter air conditioners: excellent energy-saving effect, more reliable and precise operation, smarter network control, providing users with best air conditioning experience.

CONTENTS

05 INV2

25 INV2 Mini & Slim

- 33 INV2 Heat Recovery
- 44 Indoor Units
- 65 Control System
- 83 Energy Recovery Ventilation(ERV)

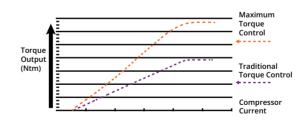
SVNI

Key Features

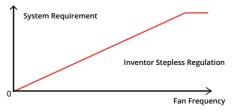
All DC Inverter Technology to Improve Compression Efficiency

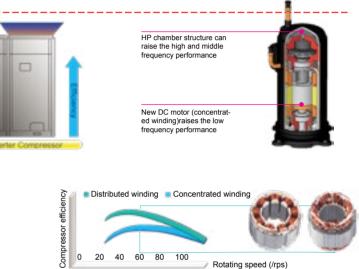
All DC inverter compressor and high-performance high pressure chamber are adopted to reduce loss of overheat and improve compression efficiency from direct intake. Compared with low pressure chamber, the compression efficiency is inproved. High-efficient permasyn motor is adopted to provide better performance than traditional DC inverter compressor.

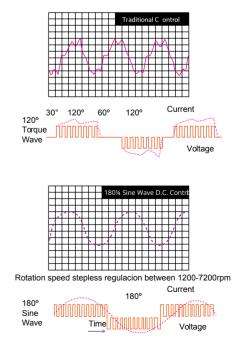
All DC Inverter Compressor


 All DC inverter compressor is used in this system. It can directly intake gas to reduce loss of overheat and improve efficiency.

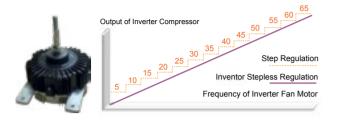
• High-efficient permasyn motor is adopted to provide better performance than traditional DC inverter compressor.


• Technology of Maximum Torque Control with Minimum Current

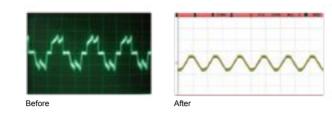

It can reduce energy loss caused by device winding so as to realize higher efficiency.


• Low-frequency Torque Control

It can directly control motor torque, through which fan motor can run at a low speed. Users will feel more comfortable while requirements of the system are also met.

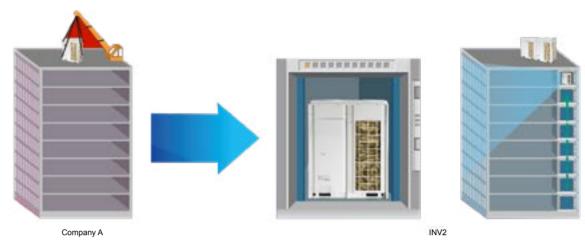


 180° Sine Wave DC Speed Varying Technology. It can satisfy various places' demands for different temperature and is able to save a great deal of electricity and provide users with utmost comfort at the same time.



Sensorless DC Inverter Fan Motor

• Stepless speed regulation ranges from 5Hz to 65Hz. Compared with traditioal inverter motors, the operation is more energy-saving.



 Sensorless control technology guarentees lower noise, less vibration and steadier operation.

Compact design

With compact design, the outdoor unit can be carried to the roof of building through elevator, with no need of crane. It is easier for delivery and installation.

88HP Max Capacity-The Largest Free Combination

Max capacity of single outdoor unit reaches 22HP and max combination capacity is even up to 88HP, in an industry leading level.

Max Combination capacity is extended to 88HP

Money is saved in system cost and piping

Non-polar CAN Technology to Improve Communication Efficiency

communication data.

Performance Index	Company A Multi-VRF Network	INV2 DC Inverter CAN Network
	Software check	Hardware check, more reliable
Reliability	One unit's communication error may lead to a breakdown of the whole network	If one unit has errors, it will exit from the network without any influence to other units.
	Low utilization	High utilization
Communication Efficiency	Communication speed is about 10Kbps.	Communication speed is 20Kbps
Compatibility	One main network, difficult to add new equipment	Multiple main networks, easy to add new equipment
Communication Distance	1500m	1500m

construction difficulties.

• Inventor is the first one to adopt non-polar CAN communication technology in the industry. CAN communication technology provides quicker system response speed, more convenient installation debugging and more reliable

• The non-polar CAN communication technology is applied to support flexible wiring installation, greatly reducing

Wide Range of Voltage and Operation Condition

Working voltage range of INV2 system has been improved to 320V~460V, which surpasses the national standard of 342V~420V. For places with insteady voltage, this system can still be running well.

Wide Applicable Location

INV2 can realize a combination of 4 outdoor unit modules connecting with as many as **80** indoor units. It's especially applicable for business building or hotels.

• Outdoor operation temperature range is improved

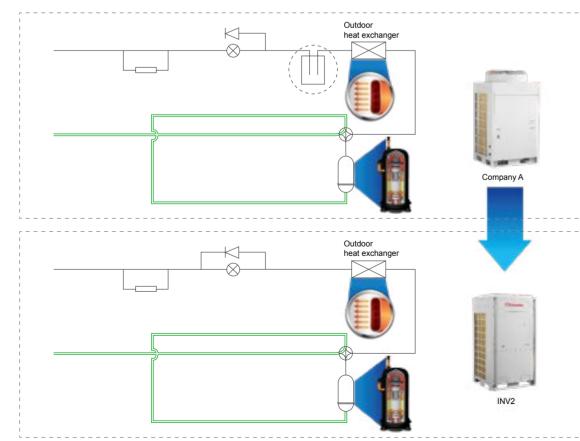
Cooling

52°C

24°C

ing.

-5°C


-20°C

to -5°C~52°C in cooling and -20°C~24°C in heat-

Max.IDU Connection: 80 sets

Refrigerant Storage and Distribution

The INV2 system is designed without liquid receiver and the excess refrigerant is stored in the piping, which can minimize the refrigerant charging volume and enhance the control accurancy of refrigerant.

High Efficiency and More Energy Saving

Thanks to the advanced all DC inverter technology, optimized system design and accurate intelligent control technology, IPLV of **INV2** All DC Inverter Multi VRF System is up to 6.8.

New Generation of Energy-saving Operation Control Technology with Energy Saving Up to 20%

The INV2 system has 2 modes for energy saving, which can be chosen to meet different electricity demands.

Mode 1:

In auto energy-saving mode, the system will self-adjust parameters according to the operation status, thus to lower the cost of electricity. Up to 15% of energy can be saved.

Mode 2:

In compulsory energy-saving mode, the system will limit power output forcibly. Up to 20% of energy can be saved.

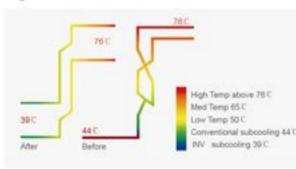
Comfortable Heating

Advanced intelligent defrosting mode is adopted. Inventor advanced intelligent defrosting mode will choose the best defrosting way according to outdoor temperature and operation status to realize intelligent defrosting, effectively improving heating effect and performance. While in traditional defrosting mode, timing defrosting is adopted, which not only affects comfort but also reduces energy efficiency.

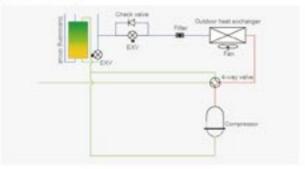
Accurate Intelligent Allocation Technology of Capacity and Output of Optimal Portion to Ensure Highest Efficiency

- When total load demands more than 75% of a running system's capacity, one more unit will automatically start;
- When total load demands less than 40% of a running. system's capacity, one unit will automatically shut down:
- · Therefore, each unit shares 40%-75% of the total load.
- · Experiments show that an air conditioner costs the least energy when it's operating within 40%-75% of its capacity.

	z z z z Company A	Inventor INV
Allocation Method	10HP(full load) * 2HP(fow load)	6HP(partial load) + 6HP(partial load)
Performance Compared	Unit costs more energy and may be soon damaged.	Unit costs less energy and can always be kept in good condition


Output of Optimal Portion to Ensure Highest Efficiency

The best heating or cooling performance can be realized in the most energy-saving way. DC inverter compressor and DC inverter fan will also be operating in this way to ensure high efficiency.



Sub-cooling Control Technology to Ensure Optimal Cooling and Heating

 Heat exchange loop can control the first subcooling process of heat exchanger. Subcooling degree can reach 11 C.

 Subcooling loop can realize 9 C second subcooling to guarantee cooling and heating performance.

Comfortable Design for A Better Life

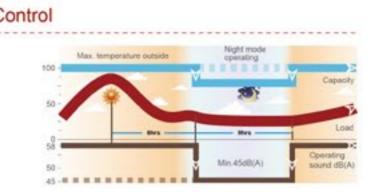
The INV2 system has a wide range of working conditions. Whether it's in a cool winter or a hot summer, normal operation is guaranteed with the least noise, making users feel more comfortable.

Outdoor Unit Quiet Mode and Quiet Control

Quiet at night

The system can record the highest outdoor temperature. At night, the system will automatically turn to quiet mode. There are 9 quiet modes which can be set according to actual needs.

Quiet in compulsion

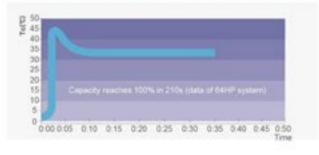

The system can also be set in this mode to ensure low noise as long as it is operating. Noise is as low as 45dB(A).

Quiet Control

Temperature Controlled by Wired Controller with Higher Efficiency and More **Energy Saving**

Through setting temperature lower limit in cooling or dry mode, and setting temperature upper limit in heating, 3D heating or heat supply mode, the system is able to operate in a smaller temperature range so as to achieve energy saving.

Quiet Indoor Unit


The indoor unit of the INV2 system also adopts DC inverter motors to realize stepless regulation. According to indoor temperature or people's needs, users can set this mode through wired controller. Noise is as low as 22dB(A).

INV2 (Indoor)


Fast Start-up in Heating

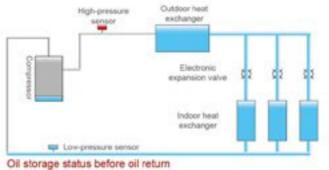
DC Compressor is first started to avoid too much electric current. Inverter compressor can operate in high frequency once starts up, so as to produce more heat.

7 Speeds Indoor Fan

Indoor fan speed can be set in 7 levels by wired controller. They are auto, low speed, medium-low speed, medium speed, medium-high speed and turbo. When the wired controller is on, press "FAN" button to set indoor fan speed circularly as below:

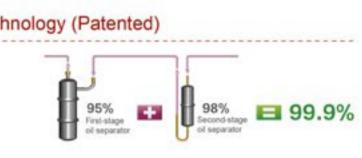
Excellent Performance Ensured by Advanced Technology

Through 10 years of research and development, Inventor INV2 has been further upgraded to a high level from electrical components, mechanical parts, control technology to communication technology.

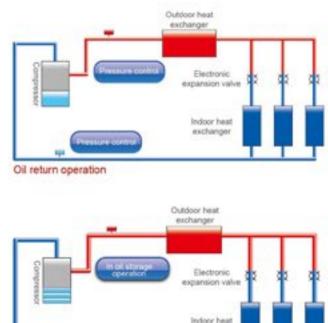

Two-stage Oil Separation Control Technology (Patented)

First-stage oil separator adopts a filtration expansion valve with separation efficiency of 98%; Second-stage oil separator will separate the remained 2% refrigerant oil with separation efficiency of 95%. General oil separation efficiency reaches 99.9%.

Oil Return Control Technology


New Oil Return Control

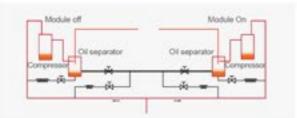
Inventor new oil return control technology effectively controls system oil return and oil storage status of each compressor, which greatly improves the operation lifespan of compressor.



Specialized Compressor Oil Storage Control

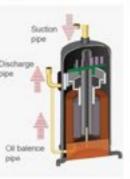
The system applies specialized compressor oil storage technology, which can control the lowest oil level for compressor operation.

s sustem oil return and oil storage status of each compressor



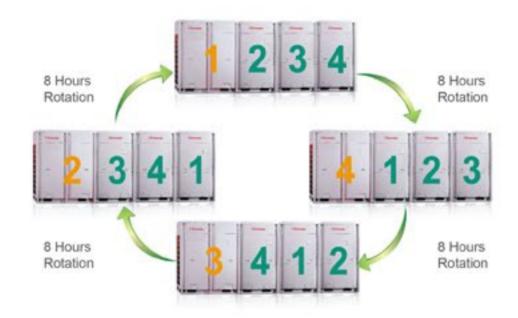
Oil storage operation

Oil Balance Control Technology


Oil Balance between Each Module

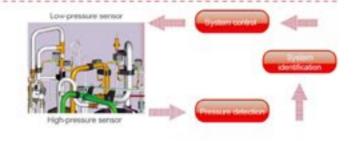
Based on the actual status of each module and compressor, the system can regulate compressor's operation and realize oil balance of each module.

Oil Balance between Each Compressor


Refrigerant is taken into the compressor by the suction pipe and then runs through the cooling system. It can control the oil level and minimum oil volume required by each compressor so as to realize oil balance between each compressor.

Modules Rotation Operating to Maximize Lifespan

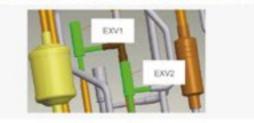
Modules 8h rotation operating


The operating priority sequence of the outdoor unit modules will be changed without restart when the system accumulatively operates for 8 hours, which can maximize the service life of the system.

Intelligent Detection Control

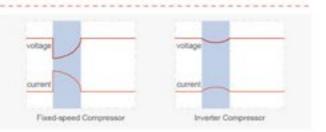
Pressure Sensor Detection Control

Pressure sensor can precisely detect system high pressure and low pressure, and adjust output of fan and compressor, so as to make sure the system can work under the most energy-saving pressure condition.



Temperature Sensor Detection Control

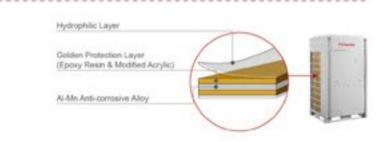
Various temperature sensors are equipped to detect ambient temperature, indoor temperature and refrigerant's evaporating temperature, from which the operation status can be measured.

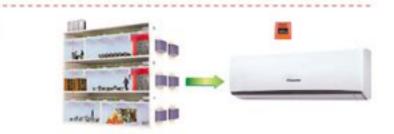

Multi Electronic Expansion Valves Control

Outdoor electronic expansion valve not only has throttling effect, but also control refrigerant flow. The system adopts multi electronic expansion valves control with total 960 grades regulated by two electronic expansion valves, so as to regulate refrigerant flow precisely and ensures reliable operation of system.

Smaller Impact to Power Grid

The start-up frequency of inverter compressor is gradually increased from 0Hz to the appointed operation frequency. The start-up current of compressor rotor is decreased by reducing load torque, hence impact to power grid during start-up is reduced and electromagnetic impact to compressor is reduced too.


Highly Anticorrosive Golden Fins


The primary material of Golden Fin is Al-Mn(Alumium-Manganese) anti-rust alloy, which is coated with the Golden Protection Layer(Components: Exoxy Resin & Modified Acrylic, Sillcon free), the anti-corrosice performance in salt-spray testing is 200%~300% higher than normal Blue Fin*.

Note: Sati-spary testing result is from INVENTOR materials chemistry testing laboratory.

Emergency Auto-Off Control

The outdoor unit can be linked with a fire alarm signal. In case of emergency, unit can automatically turn off to avoid risk or further loss.

Electricity Shortage Identification

The outdoor unit can receive a power signal of electricity shortage. In some places like first-class hotels, if diesel generator is used temporarily for providing electricity, outdoor unit will send the electricity shortage signal to indoor unit. In this case, only VIP rooms can be provided with air conditioning service.

Easy Installation for Various Kinds of Construction

ODU High Static Pressure Design

System has 4 levels of static pressure that can be set. Up to 82Pa pressure can be set for an outdoor unit. This design is especially useful when an outdoor unit needs to be placed indoor.

Excellent Emergency Operation Function to Ensure Reliable Operation

Emergency Function

The INV2 system can realize a combination of 4 outdoor unit modules. When error is occurred to one of the modules, the others will perform the emergency operation to sustain the air conditioning.

Emergency Operation of Compressor

All the compressors in each single module are DC Inverter based, when one compressor has error, others will perform the emergency operation.

Emergency Operation of Fan

Double-fan design fan ensures that one fan can still work even if the other one has error.

FRROR

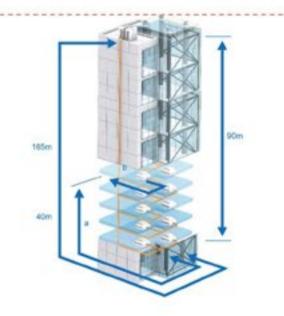
1000m Pipe Design for Flexible Installation

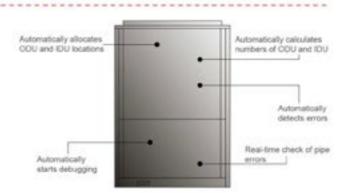
INV2 system can be applied in different types of building construction. One of its advantages is the simple pipe design, which will simplify the installation and reduce installation cost.

- Max total pipe length reaches 1000m (with limitation)
- · Actual pipe length between the outdoor unit and the farthest indoor unit: 165m
- Max height difference between indoor unit and outdoor unit: 90m

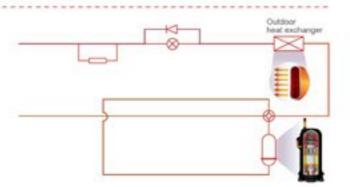
a: Distance between the first branch and the farthest indoor unit.

b: Distance between the frist branch and the nearest indoor unit. a-bri40m


Intelligent Debugging for Convenient Construction


INV2 has five auto debugging features:

- Automatic allocation of IDU and ODU addresses
- Automatic detection of IDU and ODU quantity
- Automatic detection of errors
- Automatic start-up of debugging
- Real-time judgment of pipe errors

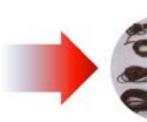


Auto-refrigerant Recovery for Easy Maintenance

When auto refrigerant recovery function is set and cut-off valve of liquid pipe is closed during maintenance, the system will automatically operate compressor, EXV, solenoid valve and fan, etc. Taking advantage of compressor power, the refrigerant is recovered at the condensing side of outdoor unit to achieve environmental effect. Meanwhile, system low pressure is displayed simultaneously during refrigerant recovery.

Inspection Window for Convenient Checking

Inspection window is available for quick checking of system operation status. No need to open panel for checking, which will be more time-saving and easier for maintenance.



Flexible Wiring

Common wire can meet the communication demand with no need of specialized communication wire. Common sheath twisted pair cable can be used as there is no polarity requirement.

COMPANY A

Inventor INV2 provides hotels with unique season setting function and key-card control function.

Season Setting

Cooling or heating mode can be deactivated during a certain season to avoid affecting unit's normal operation due to mode conflict.

Key-card Control for Hotel Management

The unit can be turned on or off by inserting or removing the key-card. When the key-card is removed, the system can remember all the setting and stop operation. When the key-card is inserted back, the system will be under standby mode or operate according to the status before removing key-card. It is well suited to hotels, restaurants, etc.

Auto Addressing of Outdoor and Indoor Unit

CAN network is adopted to achieve auto addressing of outdoor and indoor unit. It can allocate IDU and ODU addresses and detect IDU and ODU quantity, which greatly improves construction efficiency.

INV2

SPECIFICATIONS & PARAMETER OF OUTDOOR UNITS

Voutdoor Units Lineup

Model	INV2-224M1T (8HP)	INV2-280M1T (10HP)	INV2-335M1T (12HP)	INV2-400M1T (14HP)	INV2-450M1T (16HP)	INV2-504M1T (18HP)	INV2-560M1T (20HP)	INV2-615M1 (22HP)
INV2-224M1T	•							
INV2-280M1T								
INV2-335M1T			•					
INV2-400M1T				•				
INV2-450M1T					٠			
INV2-504M1T						•		
INV2-560M1T							•	
INV2-615M1T								•
INV2-680M1T		•		•				
INV2-730M1T		•			•			
INV2-785M1T		•				•		
INV2-850M1T		•					•	
INV2-900M1T		•						•
INV2-960M1T			•					•
NV2-1010M1T				•				•
NV2-1065M1T					•			•
NV2-1130M1T						•		•
NV2-1180M1T							•	•
NV2-1235M1T								••
NV2-1300M1T		•			•		•	
NV2-1350M1T		•			•			•
NV2-1410M1T			•		•			•
NV2-1460M1T		•					•	
NV2-1515M1T		•						••
NV2-1580M1T			•					••
NV2-1630M1T				•				••
NV2-1685M1T					•			••
NV2-1750M1T						•		••
NV2-1800M1T							•	••
NV2-1845M1T								•••
NV2-1908M1T		•			•		•	•
NV2-1962M1T		•				•	•	•
NV2-2016M1T		•						•
NV2-2072M1T		•					•	
NV2-2128M1T		•						
NV2-2184M1T			•					
NV2-2240M1T			-	•				
NV2-2295M1T								
NV2-2350M1T						•		
NV2-2405M1T								
NV2-2460M1T								

Specifications of Outdoor Units 380~415V,50/60Hz

Model			INV2- 224M1T	INV2- 280M1T	INV2- 335M1T	INV2- 400M1T	INV2- 450M1T	INV2- 504M1T ^{*1}	INV2- 560M1T ^{*1}	INV2- 615M1T*1
Capacity ran	ge	HP	8	10	12	14	16	18	20	22
Consoity	Cooling	kW	22.4	28	33.5	40	45	50.4	56	61.5
Capacity	Heating	kW	25	31.5	37.5	45	50	56	63	69
EER		kW/kW	4.31	4	3.98	3.76	3.56	3.38	2.97	2.75
COP		kW/kW	4.55	4.32	4.17	4.05 3.85		3.84	3.6	3.16
Power supp	ly	V/Ph/Hz		380-415V-3Ph-50/60Hz						
Max. Circuit/Fuse	Current	A	15.7/20	20.9/25	24.7/32	28.8/40	33.2/40	36.8/40	43.8/50	48.9/50
Dowor computing	Cooling	kW	5.2	7	8.41	10.65	12.65	14.9	18.9	22.3
Power comsumption	Heating	kW	5.5	7.3	9	11.1	13	14.6	17.5	21.8
Maximum drive I	DU NO.	unit	13	16	19	23	26	31	34	38
Refrigerant Charge	e volume	kg	5.9	6.7	8.2	9.8	10.3	12.7	13	13.5
Sound pressure	elevel	dB(A)	60	61	63	63	63	65	66	66
	Liquid	mm	Ф9	.52		Φ12.7			Φ15.9	
Connecting pipe	Gas	mm	Φ19.05	Φ22.2	Φ2	5.4	Φ28.6		Φ28.6	
	Oil balance	mm			Φ9.52				Φ9.52	
Dimension (Mt. D. U)	Outline	mm	930x76	5x1605		1340x765x1605			1340x765x1740	
Dimension (WxDxH)	Package	mm	1010x84	40x1775		1420x840x1775			1420x840x1910	
Net weight/Gross	weight	kg	225/235	225/235	285/300	360/375	360/375	400/415	400/415	400/415
Leading sugatify	40' GP	set	24	24	16	16	16	16	16	16
Loading quantity	40' HQ	set	24	24	16	16	16	16	16	16

Specifications of ODU Combination

380~415V,50/60Hz

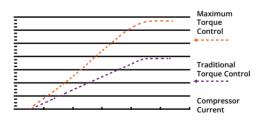
Model	Power Supply	Cap	acity	Power	r Input	Dimension (WxDxH)	Airflow Volume	ESP	Sound Pres- sure Level	Operation sound pressure level at night		onnectin e diamet		Min. circuit cur- rent	Max. fuse cur- rent	Weight
		Cooling	Heating	Cooling	Heating						Liquid	Gas	Oil Bal- ance			
		kW	kW	kW	kW	mm	m³/h	Pa	dB(A)	dB(A)	mm	mm	mm	Α	Α	kg
INV2-680M1T		68	76.5	17.65	18.4	(930x765x1605) +(1340x765x1605)	11400+14000	82	65	43	Ф15.9	028.6	09.52	54.1	63	225+360
INV2-730M1T		73	81.5	19.65	20.3	(930x765x1605)+(1340x765x1605)	11400+14000	82	65	43	Ф19.05	031.8	09.52	57.9	63	225+360
INV2-785M1T		78.4	88	21.2	21.4	(930x765x1605)+(1340x765x1740)	11400+16000	82	66	43	Ф19.05	031.8	09.52	65.6	80	225+360
INV2-850M1T		84	94.5	23	23.9	(930x765x1605)+(1340x765x1740)	11400+16000	82	67	43	Ф19.05	031.8	09.52	71	80	225+385
INV2-900M1T		89.5	100.5	25.5	26.2	(930x765x1605)+(1340x765x1740)	11400+16000	82	67	43	Ф19.05	031.8	09.52	72.7	80	225+385
INV2-960M1T		95	106.5	26.91	27.9	(1340x765x1605) +(1340x765x1740)	14000+16000	82	68	43	Ф19.05	031.8	09.52	76.5	80	285+385
INV2-1010M1T		101.5	114	29.15	30	(1340x765x1605)+(1340x765x1740)	14000+16000	82	68	43	Ф19.05	038.1	09.52	80.6	100	360+385
INV2-1065M1T		106.5	119	31.15	31.9	(1340x765x1605)+(1340x765x1740)	14000+16000	82	68	43	Ф19.05	038.1	09.52	85	100	360+385
INV2-1130M1T		111.9	125.5	32.7	33	(1340x765x1740) x2	16000x2	82	68	43	Ф19.05	038.1	09.52	96.5	100	360+385
INV2-1180M1T		117.5	132	34.5	35.5	(1340x765x1740) x2	16000x2	82	69	43	Ф19.05	038.1	09.52	101.9	125	385+385
INV2-1235M1T		123	138	37	37.8	(1340x765x1740) x2	16000x2	82	69	43	Ф19.05	038.1	09.52	103.6	125	385+385
INV2-1300M1T		129	144.5	35.65	36.9	(930x765x1605) +(1340x765x1605) + (1340x765x1740)	11400+14000+16000	82	69	45	Ф19.05	038.1	09.52	104.2	125	225+360+385
INV2-1350M1T		134.5	150.5	38.15	39.2	(930x765x1605) +(1340x765x1605) + (1340x765x1740)	11400+14000+16000	82	69	45	Ф19.05	038.1	09.52	105.9	125	225+360+385
INV2-1410M1T		140	156.5	39.56	40.9	(1340x765x1605) x2+(1340x765xl740)	14000x2+16000	82	69	45	Ф19.05	041.3	09.52	109.7	125	285+360+385
INV2-1460M1T		145.5	163.5	41.5	42.8	(930x765x1605) +(1340x765x1740) x2	11400+16000x2	82	69	45	Ф19.05	041.3	09.52	122.8	125	225+385x2
INV2-1515M1T	380- 415V-	151	169.5	44	45.1	(930x765x1605)+(1340x765x1740)x2	11400+16000x2	82	70	45	Ф19.05	041.3	09.52	124.5	125	225+385x2
INV2-1580M1T	3Ph-	156.5	175.5	45.41	46.8	(1340x765x1605) + (1340x765x1740) x2	14000+16000x2	82	70	45	Ф19.05	041.3	09.52	128.3	160	285+385x2
INV2-1630M1T	50/60Hz	163	183	47.65	48.9	(1340x765x1605) + (1340x765x1740) x2	14000+16000x2	82	70	45	Ф19.05	041.3	09.52	132.4	160	360+385x2
INV2-1685M1T		168	188	49.65	50.8	(1340x765x1605) + (1340x765x1740) x2	14000+16000x2	82	70	45	Ф19.05	041.3	09.52	136.8	160	360+385x2
INV2-1750M1T		173.4	194.5	51.2	51.9	(1340x765x1740) x3	16000x3	82	70	45	Ф19.05	041.3	09.52	148.3	160	360+385x2
INV2-1800M1T		179	201	53	54.4	(1340x765x1740) x3	16000x3	82	71	45	Ф19.05	041.3	09.52	153.7	160	385x3
INV2-1845M1T		184.5	207	55.5	56.7	(1340x765x1740) x3	16000x3	82	71	45	Ф19.05	041.3	09.52	155.4	160	385x3
INV2-1908M1T		190.5	213.5	54.15	55.8	(930x765x1605) +(1340x765x1605) +(1340x765x1740) x2	11400+14000+16000x2	82	72	47	Ф22.2	044.5	09.52	156	160	225+360+385x2
INV2-1962M1T		195.9	220	55.7	56.9	(930x765x1605)+(1340x765x1740)x3	11400+16000x3	82	73	47	Φ22.2	044.5	09.52	167.5	200	225+360+385x2
INV2-2016M1T		201.5	226.5	57.5	59.4	(930x765x1605)+(1340x765x1740)x3	11400+16000x3	82	73	47	Φ22.2	044.5	09.52	172.9	200	225+385x3
INV2-2072M1T		207	232.5	60	61.7	(930x765x1605)+(1340x765x1740)x3	11400+16000x3	82	73	47	Φ22.2	044.5	09.52	174.6	200	225+385x3
INV2-2128M1T		212.5	238.5	62.5	64	(930x765x1605)+(1340x765x1740)x3	11400+16000x3	82	73	47	Ф22.2	044.5	09.52	176.3	200	225+385x3
INV2-2184M1T		218	244.5	63.91	65.7	(1340x765x1605) +(1340x765x1740) x3	14000+16000x3	82	74	47	Φ22.2	044.5	09.52	180.1	200	285+385x3
INV2-2240M1T		224.5	252	66.15	67.8	(1340x765x1605) +(1340x765x1740) x3	14000+16000x3	82	74	47	Φ22.2	044.5	09.52	184.2	200	360+385x3
INV2-2295M1T		229.5	257	68.15	69.7	(1340x765x1605) +(1340x765x1740) x3	14000+16000x3	82	74	47	Φ22.2	044.5	09.52	188.6	200	360+385x3
INV2-2350M1T		234.9	263.5	69.7	70.8	(1340x765x1740) x4	16000x4	82	75	47	Φ22.2	044.5	09.52	200.1	250	360+385x3
INV2-2405M1T		240.5	270	71.5	73.3	(1340x765x1740) x4	16000x4	82	75	47	Φ22.2	044.5	09.52	205.5	250	385x4
INV2-2460M1T]	246	276	74	75.6	(1340x765x1740) x4	16000x4	82	75	47	Φ22.2	044.5	09.52	207.2	250	385x4

INV2 Mini & Slim

Key Features

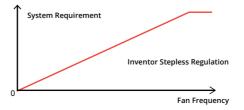
All DC Inverter Technology to Improve Compression Efficiency

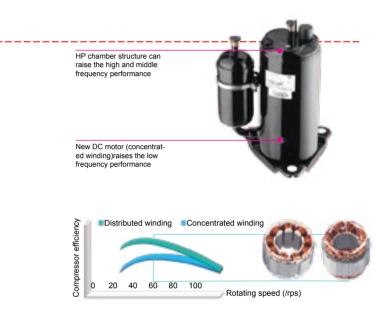
All DC inverter compressor and high-performance high pressure chamber are adopted to reduce loss of overheat and improve compression efficiency from direct intake. Compared with low pressure chamber, the compression efficiency is inproved. High-efficient permasyn motor is adopted to provide better performance than traditional DC inverter compressor.

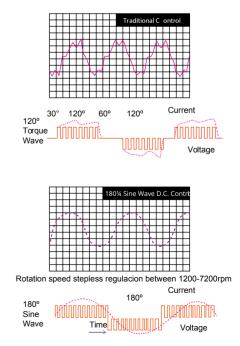

All DC Inverter Compressor

 All DC inverter compressor is used in this system. It can directly intake gas to reduce loss of overheat and improve efficiency.

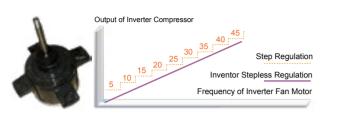
• High-efficient permasyn motor is adopted to provide better performance than traditional DC inverter compressor.

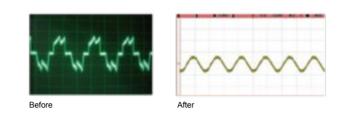

• Technology of Mximum Torque Control with Minimum Current


It can reduce energy loss caused by device winding so as to realize higher efficiency.


• Low-frequency Torque Control

It can directly control motor torque, through which fan motor can run at a low speed. Users will feel more comfortable while requirements of the system are also met.




 180° Sine Wave DC Speed Varying Technology. It can satisfy various places' demands for different temperature and is able to save a great deal of electricity and provide users with utmost comfort at the same time.

Sensorless DC Inverter Fan Motor

- Stepless speed regulation ranges from 5Hz to 44Hz. Compared with traditioal inverter motors. the operation is more energy-saving.
- Sensorless control technology guarentees lower noise. less vibration and steadier operation.

Curve of load characteristics

0 150 300 450 600 750 900 1050 1200 1350 1500

Efficiency comparison between Inventor high efficiency PFC and conventional PFC

Efficiency of Inventor high-efficiency PFC

Power output(w)

4000

3000

Efficiency of conventional PEC

6000

5000

0.8

0.2 0.1

Efficiency

99.00%

98.00% 97.00%

96.00%

95.00%

94.00%

93.00%

1000

2000

Sensorless DC Inverter Fan Motor

The indoor unit adopts high-efficiency brushless DC motor. Compared with conventional motor, the wfficiency of brushless DC motor is improved by more than 30%. Meanwhile, the design of evaporation capacity flow is optimized through emulation software of refrigeration system and the heat exchange amount of evaporator is greatly improved.

High-efficiency Digital PFC Control*

High-efficiency PFC control technology is adopted with efficiency improved by about 1% compared with conventional PFC. For the air conditioner with rated power of 5kW, 50W of electricity can be saved every hour and 1.2kW of electricity can be saved every day.

*This feature applicable for INV2 Mini only.

Wider Operation Condition Range

The unit adopts DC motor with more accurate high pressure control, which effectively solves the high pressure control problem in low ambient temperature cooling. So the operation range in cooling is wider.

Comfortable and Quiet Model

Low Noise of Outdoor Unit

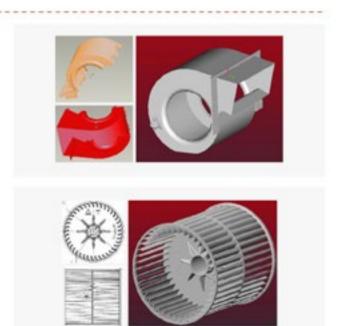
- · The advanced sub-cooling control technology is applied to reduce the liquid flow noise of indoor unit in cooling operation.
- Noise of outdoor unit can be as low as 45dB thanks to noise optimized design or fan system and compressor system, and multiple kinds of quiet modes of outdoor unit.

Low Noise of Indoor Unit

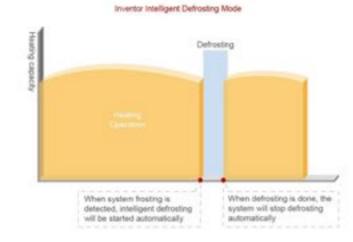
- The pioneering and patented high-efficiency centrifugal fan blade and low-noise volute are adopted. Meanwhile, the imported silent valve is adopted to reduce noise of entire unit as low as 22db(A).
- · By adopting the optimal inlet angle of centrifugal fan blade and optimal diameter ratio between internal and external circles of impeller, the air volume is increased and fan noise is decreased greatly.
- The advanced supercooling control technology and the oil-return technology under heating mode has efficiently solved the problem of liquid flow noise of indoor unit, which improved the sound quality of indoor unit.

Intelligent Temperature Control Technology

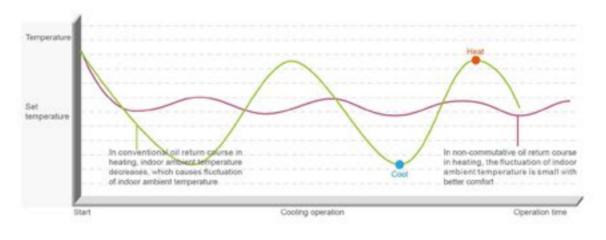
Intelligent temperature control technology is adopted for super fast cooling or heating, so that indoor temperature will reach set temperature more quickly.



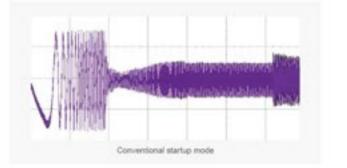
INV2 Mini


INV2 Slim

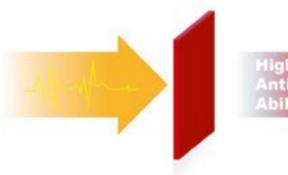
Comfortable Heating


Advanced intelligent defrosting mode is adopted. Inventor advanced intelligent defrosting mode will choose the best defrosting way according to outdoor temperature and operation status to realize intelligent defrosting, effectively improving heating effect and performance. While in traditional defrosting mode, timing defrosting is adopted, which not only affects comfort but also reduces energy efficiency.

Non-commutative Oil Return Technology in Heating

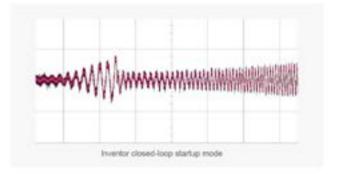

The unit can achieve non-commutative oil return in heating when outdoor ambient temperature is within 0~20°C. Thanks to this technology, indoor ambient temperature is more stable and comfort is improved in heating mode.

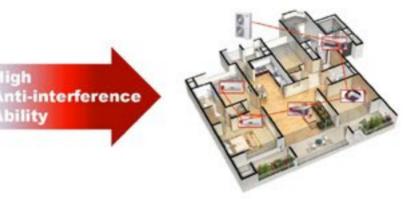
Reliable Operation


Compressor Closed-loop Startup Technology with More Reliable Startup

The self-innovative closed-loop startup control technology is adopted. Thanks to this technology, the startup current is small and startup is more reliable.

High Anti-interference Ability


The latest CAN bus communication technology is adopted, with non-polar communication and high anti-interference ability. Common communication wire can meet the communication demand with no need of specialized shielded wire. The customers can buy the communication wire by themselves, greatly reducing installation difficulties.




High Ability

Advanced High-frequency Transformer with More Stable Voltage

- The advanced switching power supply is adopted with lower power consumption and higher power efficiency.
- Wide voltage-regulation range ensures stable voltage output when the voltage of grid fluctuates.
- · Compared with conventional transformer, the size of high-frequency transformer is small and the weight is light.

Ultra-long Connection Pipe for More Convenient Connection

Under the subcooling control technology gained by adding subcooler, the indoor unit and outdoor unit of INV2 mini can operate reliably with longer connection pipe.

	Company A	Inventor INV2 Silm	Inventor NV2 Min
Total piping length	150m	300m	300m
Equivalent piping length	70m	100m	150m

Top Advanced Light and Compact Size

INV2 slim adopts small and compact size design. The dimension of the unit is 1430(H)×940(W) ×320(D). Compared with the normal product with the same capacity, size and weight are reduced a lot.

Easy Installation with Lower Construction Cost

The outdoor unit of INV2 slim is with small size and light weight. No need fork lifter and crane for movement and installation

Movement by Stairs and Elevator

The outdoor unit of INV2 slim is with compact and small size for saving space and easy movement. It can be carried by elevator or stairs.

INV2 Mini & Slim Line Up

Mini Line up

Mini 50/60 Hz

	Model		INV2-H120N15*	INV2-H140N15*	INV2-H160N1S*
Capacity range	0.5	HP	4	5	6
Capacity	Cooling	kW	12.1	14	16
Capocity	Heating	kW	14	16.5	18.5
EER		WW	3.97	3.52	3.3
COP		W/W	4.28	4.14	3.90
Power's	wpphy	WPhHz		220-240V-1Ph-50Hz8208-230V-1Ph-60Hz	
Max. Circuit/Fu	use Current	Α.	28.1/32	31.8/32	33.640
Power	Cooling	kW	3.05	3.98	4.85
comsumption	Heating	kW/	3.27	3.99	4.67
Maximum drive	e IDU NO.	unit	7.	8	9
Refrigerant Ch	arge volume	kg	5	5	5
Sound pressur	re level	dB(A)	55	58	58
Connecting	Liquid	mm		Ø9.52	
pipe	Gas	mm	@15	87	@19.05
Dimension	Outline	mm		900*340*1345	
(W°D'H)	Package	mm		998*458*1515	
Net weight/Gro	oss weight	kg	110/120	110/120	110/120
Loading	40' GP	set	57	57	57
quantity	40' HQ	set	57	57	57

*1. This series outdoor unit cannot match with US air handler, fresh air processing unit and high static ESP duct type unit.

Slim 50/60 Hz

	Model		INV2-H224N1T	INV2-H280N	
Capacity range		HP	8	10	
Capacity	Cooling	kW/	22.4	28.0	
Cabacity	Heating	kW	25.0	31.5	
EER		WWW	3.5	2.97	
COP		WOW	4.1	3.00	
IPUV	Cooling	kWOKW	6.1	6.0	
Power supply	over supply		380-415-38		
Max. Circuit/Fu	se Current	A	25	25	
Power	Cooling	kW	7.2	0.4	
consumption	Heating	kW	6.1	0.0	
Maximum drive	IDU NO.	unit	13	17	
Refrigerant Cha	arge volume	kg .	5.5	7.5	
Sound pressure	Cooling	(6B(A)	50	59	
level	Heating	dB(A)	50	60	
Connecting	Liquid	mm	49.52	¢12.7	
pipe	Gas	mm	@19.05	025.4	
Dimension	Outine	men	940*320*1430	940*460*16	
(W*D*H)	Package	mm	1033*433*1580	1033*573*17	
Net weight/Gro	es weight	kg	133/144	160/175	
Loading	40' GP	set	54	- 64	
quantity	40' HQ	set	54	44	

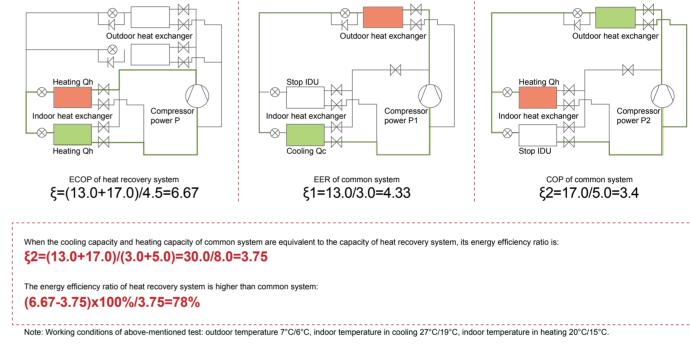
Testing conditions of rated cooling capacity: indoor 27°CDB/19°CWB, outdoor 35°CDB, connection pipe length of Sm, no height difference between units.

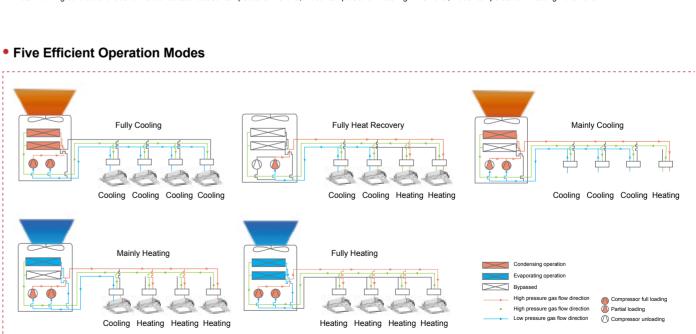
2 Testing conditions of rated heating capacity: indoor 20°CDB, outdoor 7°CDB/6°CWB, connection pipe length of 5m, no height difference between units.

The total indoor unit capacity shall be within 50% to 130% of outdoor unit capacity. Correction of other parameters can be referred to the unit capacity correction sheet.
The above mentioned parameters are tested with standard connection pipe length. In actual engineering, please arrange correction according to the capacity correction with long connection pipe.

HP	Model	Product Outlook
8	INV2-H224N1T	0
10	INV2-H250N1T	0
12	INV2-H335N1T	- mar

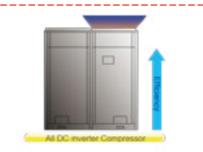
	INV2-H335N1T
	12
	33.5
	37.5
	3.04
	3.60
	6.0
Hz.	
	25
	. 11.0
	10.4
	20
	8.0
	60
	61
	Φ12.7
	025.4
	040*460*1615
	1033*573*1765
	175/105
	- 44
	44

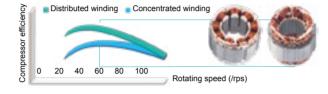

INV2 Heat Recovery



Key Features

High Efficiency

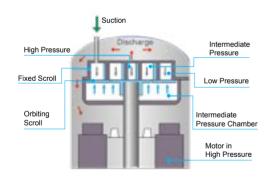

INV2 Heat Recovery System embodies the excellent features of INV2 (DC inverter technology, DC fan linkage control, precise control of capacity output, balancing control of refrigerant, original oil balancing technology with high pressure chamber, high-efficiency output control, low-temperature operation control technology, super heating technology, high adaptibility for project, environmental refrigerant). Its energy efficiency is improved by 78% compared with conventional multi VRF.



All DC Inverter Technology to Improve Compression Efficiency

• All DC inverter compressor is used in this system. It can directly intake gas to reduce loss of overheat and improve efficiency.

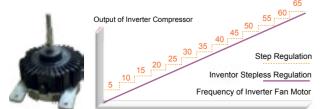
• High-efficient permasyn motor is adopted to provide better performance than traditional DC inverter compressor.

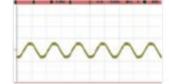

High Pressure Chamber Design

What's high pressure chamber?

The low temperature and low pressure refrigerant gas inhaled from the suction inlet of compressor will change to high-temperature and high-pressure gas after compression by scroll plate. Then the gas will go out from the exhaust at the center of fixed scroll and get into lower chamber of compressor, so that the chamber of compressor is in high temperature and high pressure.

What's the benefits of high pressure chamber?


High pressure chamber compressor inhales directly to reduce overheat suction loss and improve compression efficiency.


Sensorless DC Inverter Fan Motor

Stepless speed regulation ranges from 5Hz to 65Hz. Compared with traditioal inverter motors, the operation is more energy-saving.

Sensorless control technology guarentees lower noise, less vibration and steadier operation.

Wide Range of Voltage to Ensure a Steady Running Working voltage range of INV2 system has been im-INV2 proved to 320V~460V, which surpasses the national 420V 320V standard of 342V~420V. For places with insteady voltage, this system can still be running well. Competitors 342V

Wide Applicable Location

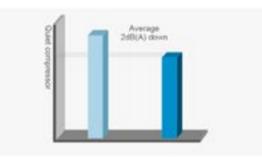
INV2 can realize a combination of 4 outdoor unit modules connecting with as many as 80 indoor units. It's especially applicable for business building or hotels.

32

Max.IDU Connection: 80 sets

Comfortable Design for A Better Life

Intelligent Quiet Function at Night


· Quiet at night

Intelligently adjustment of outdoor fan control can minimize the noise during night time. Up to 8dB(A) can be reduced and operation noise at night is as low as 50dB(A).

· Low noise design

HP Chamber compressor has lower exhaust pressure fluctuation so that noise is lower.

The optimized design of condensing fan blade reduces the air flow turbulence among blades, so that the noise is lower.

Wide Operation Range

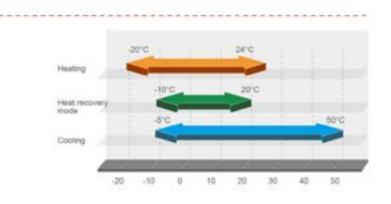
The unit can operates in wide range, greatly reducing the ambient temperature limitation.

Note:

If the required capacity of isdoor units is 50% higher than outdoor unit,cooling range may be lower to -15°C.

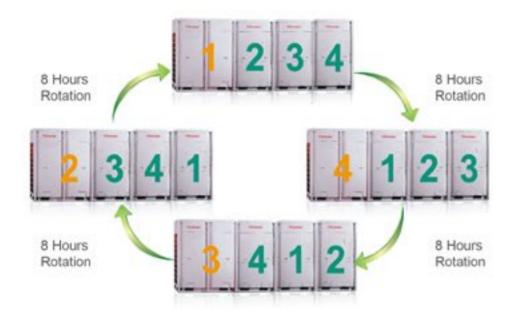
If the required capacity of indoor units is 50% higher than outdoor unit,cooling range may be up to -5°C

Comfortable Heating


Advanced intelligent defrosting mode is adopted. Inventor advanced intelligent defrosting mode will choose the best defrosting way according to outdoor temperature and operation status to realize intelligent defrosting, effectively improving heating effect and performance. While in traditional defrosting mode, timing defrosting is adopted, which not only affects comfort but also reduces energy efficiency.

Individual Control for More Energy Saving

The set temperature of each room may vary by the individual thermostat control of each indoor unit. The cooling and heating operation can be performed at the same time.



Excellent Performance Ensured by Advanced Technologyn

Modules Rotation Operating to Maximize Lifespan

Modules 8h rotation operating

The operating priority sequence of the outdoor unit modules will be changed without restart when the system accumulatively operates for 8 hours, which can maximize the service life of the system.

Excellent Emergency Operation Function to Ensure Reliable Operation

Emergency Function

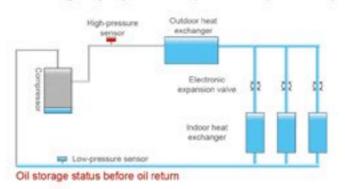
The INV2 system can realize a combination of 4 outdoor unit modules. When error is occurred to one of the modules, the others will perform the emergency operation to sustain the air conditioning.

Emergency Operation of Compressor

All the compressors in each single module are DC Inverter based, when one compressor has error, others will perform the emergency operation.

 Emergency Operation of Fan Double-fan design ensures that one fan can still

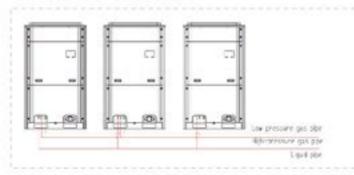
work even if the other one has error.


Highly Anticorrosive Golden Fins

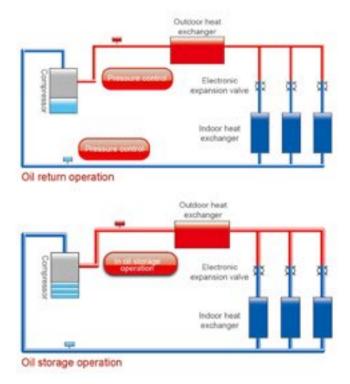
The primary material of Golden Finis Al-Mn(Alumium-Manganese) anti-rust alloy, which is coated with the Golden Protection Layer(Components: Exoxy Resin & Modified Acrylic, Sillcon free), the anti-corrosice performance in salt-spray testing is 200%~300% higher than normal Blue Fin*.

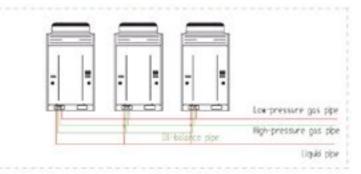
V Oil Return Control Technology ----------

New Oil Return Control


which greatly improves the operation lifespan of compressor.

 Specialized Compressor Oil Storage Control The system applies specialized compressor oil storage technology, which can control the lowest oil level for compressor operation.


Without External Oil-balanced Pipe Design


The unit is without external oil-balanced pipe design, reducing system pipeline connection and easy for engineering installation. The system will allocate lubricating oil of each module according to its demand, which is more intelligent, more efficient and more equal.

Golden Protection Layer (Epoxy Resin & Modified	Acrylic)	-	
		1	
Al-Mn Anti-corrosive Alloy			7
Note: Sati-spary testing re	and in factor CODE		alista testina l
ore: Sati-spary testing in	mult is itom Grit;	c. materials cher	neary teating a

Inventor new oil return control technology effectively controls system oil return and oil storage status of each compressor,

Easy Installation and Maintenance

Compact Design

With compact design, the outdoor unit can be carried to the roof of building through elevator, with no need of crane. It is easier for delivery and installation.

Easy Maintenance

Error Display & Self-diagnostic Function Through LED display(different combinations of ON, OFF, or BLINK) on the main board, the malfunction can be judged.

Easy Transportation

Optimized base frame

Optimized base frame, the locating and fixing of the outdoor unit during installation is more convenient and reliable.

Transportable by forklift

Five-way piping connection

Piping and wiring are available to the front and back, left and right, and bottom.

The five-waypiping connection reduces installation difficulty and cost, improves the installation efficiency.

INV2 HR Line Up |

F HR Line up

HP	Model	Product Outlook
BHP	INV2-HR224M1T	-
10HP	INV2-HR280M1T	
12HP	INV2-HR335M1T	
14HP	INV2-HR400M1T	
16HP	INV2-HR450M1T	State of the second sec

Specifications and Parameters

	Model		INV2-HR224M1T	INV2-HR280M1T	INV2-HR335M1T	INV2-HR400M1T	INV2-HR450M1T
Capacity rang	e	HP	8	10	12	14	16
Canada.	Cooling	kW	22.4	28	33.5	40	45
Capacity	Heating	KW	25	31.5	37.5	45	50
EER .		WW	4.07	3.73	3.76	3.54	3.33
90C		WWW	4.17	3.89	3.68	3.85	3.62
PLV	Cooling	KW/KW	1	1	1	1	1
Power Supply		V/Ph/Hz		380	-415V-3Ph-50/60Hz		
Max. circuit/fu		A	15.7/20	20.9/25	24.7/32	28.8/40	33.240
Power	Cooling	KW	5.5	7.5	8.9	11.3	13.5
onsumption	Heating	KW	6	8.1	10.2	11.7	13.8
Maximum driv	e IDU NO	unit	13	16	19	23	26
Refrigerant CI	targe volume	kg .	6.2	7.1	8.6	10.2	10.5
iound pressu	re level	dB(A)	60	61	63	63	63
Connecting	Liquid	mm	Ø9	52		Φ12.7	
spe	Gation personal	entes	¢19.05	Ø22.2	025	14	©28.6
-9-4	Gateseeme	F1075		Ø19.05		42	2.2
Simension	Outline	min	930*76	5*1605		1340*765*1605	
(W*D*H) Package		envin	1010184	IO*1775		1420*840*1775	
Net weight?	Gross weight	kg	233/243	233/243	303/318	380/375	360/375
.oading	40' GP	set	24	24	10	16	16
quantity	40° HQ	set	24	24	16	16	16

50 Hz

Mod	el .		INV2-MEU11	INV2-MEU41	INV2-MEU81	
Max.IDU Branches		unit	1.	4	8	
No. of connectable ID	o. of connectable IDU of each branch		8	8	8	
otal Connectable IDU		unit	8	32	64	
Asx. Capacity of each branch		KWERW	14	14	14	
tax. Capacity of connectable IDU		kW/kW	14 45		65	
ower supply		WPhiNz		220-240V-1Pth-50Hz		
Power consumption		W	20	30	30	
Maximum drive IDU	NO.	unit	1	4		
Charlen (bra	Liquid	17575	Φ9.52	Ф12.7	©15.9	
Outdoor Unit	Gatition pressure	mm	Ø15.9	922.2	922.2	
Piping Connection Gasory pressent		mm	Ø19.05	428.6	@28.6	
Indoor Unit Piping Liquid		mm	49.5	Ø9.5	49.5	
Connection Gas		mm	@15.9	Ø15.9	@15.9	

Key Features of Indoor Units

High Static Pressure Duct Type Indoor Unit

· High static pressure design

Static pressure can be up to 150Pa, especially suitable for places in need of long distance airflow.

Easy maintenance

The system has maintenance port for easy maintenance.

Convenient installation

You can choose circular air duct or rectangular air duct according to actual needs. Or you can choose different ways of air return.

Protection function

Anti-freezing protection, fan motor overload protection, temperature sensor malfunction protection.

Low Static Pressure Duct Type Indoor Unit

· Low static pressure, low noise

Especially suitable for rooms of compact structure or small installation space. Also, it provides you with a comfortable and quiet living environment.

Intelligent drainage device

Water height difference up to 1.0m, which can effectively drain out condensing water and save space.

Note: Please specify if you need this function.

Convenient installation

Tab type plastic filter, detachable fan motor, independent water pump assembly and electric box assembly, all for convenient maintenance.

Protection function

Water overflow protection, anti-freezing protection, fan motor overload protection, temperature sensor malfunction protection.

📕 Slim Duct Type Indoor Unit

Highly Efficient & Energy-saving

High-efficiency DC brushless motor is used. Its efficiency is improved by over 30% compared with common motor. Evaporator flow path adopts simulating optimized design via the refrigeration system simulation software, which has greatly increased the heat exchange capacity of evaporator.

Slim & Small

The unit is only 200mm's thick and 450mm's deep. Suspended ceiling doesn't have to be very high. It is suitable for ordinary rooms.

Wiring of Electric Control Box

Mounting board of electric control box elements are arranged at both sides of the mounting board of fan motor. There is a wire-cross notch on each side so that wiring at both sides of the mounting board of fan motor is convenient and efficient. Strong and weak current are also separated to ensure the effectiveness of weak current signal transmission.

Protection Functions

Anti-freezing protection, fan motor built-in overload protection, temperature sensor error protection

Ultra-quiet

High-efficiency centrifugal fan and ultralow noise volute are developed with ANSYS and Fluent. They have also gained national patents. Meanwhile, inlet mute valve is adopted so that noise of the complete unit is greatly reduced.

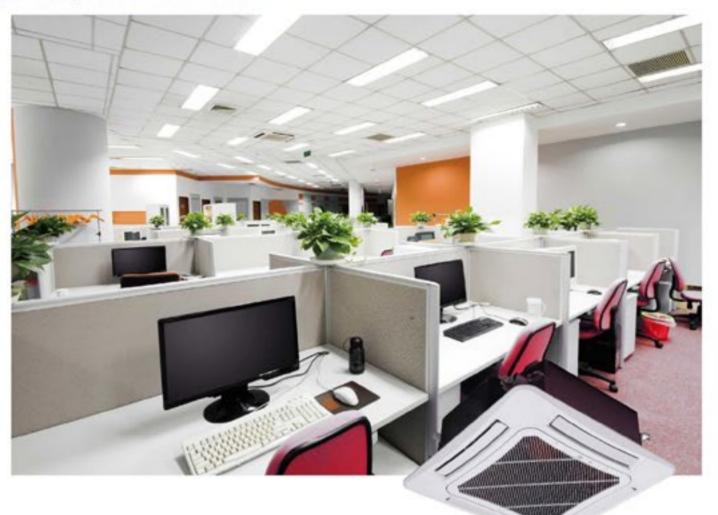
Fast & Strong

Intelligent temperature control technology is adopted. Cooling/ Heating function is fast and strong so that room temperature can quickly reach set temperature.

Flexible Installation

Based on the requirements of building and utilization, different ways of air return and different air supply static pressure can be selected.

CAN Bus Communication Technology


System response speed is faster and communication is more reliable. Auto addressing, non-polar communication, free wire matching

Convenient Operation & Maintenance

Electric control box is attached independently so that it can be detached as a whole, which is convenient for maintenance. The installation and maintenance of fan and motor is also convenient.

Indoor Units

4-way Cassette Indoor Unit

Strong and balanced airflow

Unit features auto operation, 4-way airflow, 7 fan speeds and strong circulating airflow.

Ultra-low noise operation

DC inverter motor can realize stepless speed regulation to lower noise. Indoor unit can be set to work under auto quiet mode via wired controller.

Intelligent drainage device

Water height difference up to 1.0m, which can effectively drain out condensing water and save space.

DC inverter motor

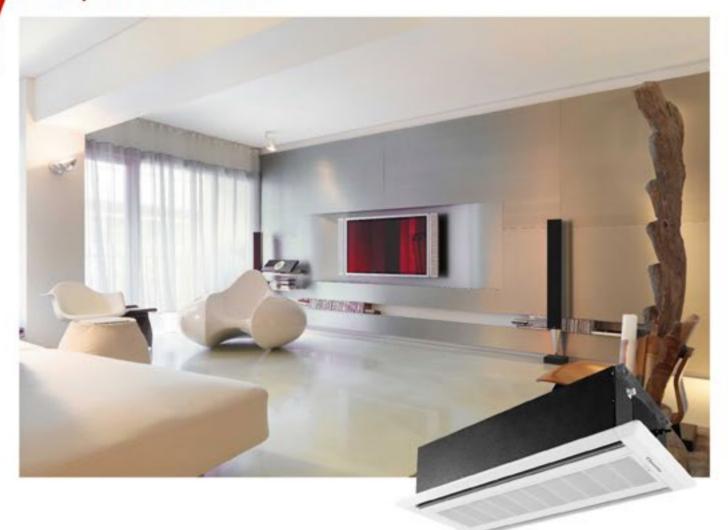
With good speed regulation performance, motor efficiency improved by 30% v.s. normal motor.

Protection function

Water overflow protection, anti-freezing protection, temperature sensor malfunction protection, fan motor overload protection.

Compact 4-way Cassette Indoor Unit

Compact Design for Easy Installation Units maintain the uniform length and width with consistent ceiling opening and panel dimension, convenient for design and installation;


Ultra-low noise operation

DC inverter motor can realize stepless speed regulation to lower noise. Indoor unit can be set to work under auto quiet mode via wired controller.

Intelligent drainage device

Water height difference up to 1.0m, which can effectively drain out condensing water and save space.

2-way Cassette Indoor Unit

Beautiful Appearance

With beautiful and elegant front panel, it is congenial to the indoor surroundings.

Intelligent drainage device

Water height difference up to 1.0m, which can effectively drain out condensing water and save space.

Two-way air flow design

Two-way air outlet, to stretch air outlet distance and solve air supply problem of elongated room

Multiple protections

Anti-freezing protection, temperature malfunction protection, fan motor overload and humidity sensor protection.

I-way Cassette Indoor Unit

Small installation space With 185mm ultrathin design, unit can be installed in the ceiling of 19cm deep.

Detachable grille and long life filter

Grille is detachable for easy cleaning. With durable filter, cleaning cycle is 20 times longer.

· High drain pump lift

Drain pump lift reaches 1.0m, which can effectively drain out water.

Protection function

Water overflow protection, anti-freezing protection, fan motor overload protection, temperature sensor malfunction protection.

Wall-mounted Indoor Unit

Comfortable and balanced airflow, up&down air outlet

Up air outlet: In cooling, cool air blows out horizontally and then gradually drops. Down air swing: In heating, warm air blows downward and then gradually climbs up.

Triple defenders for better purification

Mildew-proof filter, electrostatic fibre and anti-blotic fibre adopted to remove dust, smell, bacteria and mildew.

· Cold air prevention design

During heating in winter, cold air prevention function is enabled so that air won't be blown out until it's warm.

Multiple protections

Anti-freezing protection, temperature sensor malfunction protection, fan motor overload protection.

Hoisted or seated, flexible installation Unit can be hoisted or seated. When seated, suspended ceiling is not needed.

Floor Ceiling Type Indoor Unit

Beautiful appearance

With beautiful and elegant front panel, it is congenial to the indoor surroundings.

Protection function

Anti-freezing protection, temperature sensor malfunction protection, fan motor overload protection.

· Horizontal and vertical air swing

Wider air swing range for your comfortable working and living environment.

Console Indoor Unit

Floor Standing Indoor Unit

Multiple fan speed

The fan can operate in multiple speed and satisfy different air flow volume requirements.

Detachable grille and long life filter

Grille is detachable for easy cleaning. With long life filter, cleaning cycle is 20 times longer.

High drain pump lift

Drain pump lift reaches 1.0m, which can effectively drain out water.

Protection function

Water overflow protection, anti-freezing protection, fan motor overload protection, temperature sensor malfunction protection, auxiliary electric heating overheat protection(This function is not included in pure heat pump unit). Wide Application

It can be widely adopted in hotels, restaurants, office, etc.

• Auto clean to ensure a healthy life

After turning off the unit, the indoor fan will keep running in low speed for a moment to dry the inner components and parts, in order to prevent mildew and keep user healthy.

Fresh Air Processing Indoor Unit

Airflow volume: 1200~4000m³/h Applicable range: Residential houses, villas, business buildings, hotels, apartments, etc.

One system, two functions

 Adopted with DC inverter technology, Fresh Air DC Inverter Multi VRF System features air conditioning function and fresh air function.

Enjoy fresh air

- Airflow volume: 1200~4000m³/h, cooling capacity: 14-45kW Applicable for all kinds of structure.
- Direct evaporative cooling adopted, air conditioning+fresh air can be realized accurately and precisely.
- DC inverter technology adopted, constant humidity is enabled with less power consumption.
- Integrated system control with Inventor INV2 Multi VRF System.

Air conditioning and fresh air, two in one

Less investment

Fresh Air DC Inverter Multi VRF System can be combined with Inventor INV2. For a same room, if the same amount of fresh air is to be taken, then the cost of INV2 +Fresh air unit is equivalent to the cost of INV2+Air exchange fan.

Less operation cost

Unit can control refrigerant output according to actual needs to ensure constant airflow temperature. By adjusting power output, light-load but high power operation can be avoided. Thus, operation cost can be greatly reduced.

· Less installation space

Save installation space for outdoor units. Especially suitable for places that have restricted installation space.

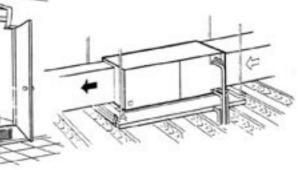
Air Handler

Highly Flexible Installation

The unit is designed for outdoor installation and less indoor space taking, allowing easy installation and maintenance. The unit can be installed on the ground or on the roof of the building, which means the installation is totally flexible depending on the project requirement.

Cold Air Prevention Design

When heating in winter, cold air prevention function is enabled so that air won't be blown out until it's warm.


Long life and Washable Filter

The filter is easy to be dismantled and installed. You can use dust collector or water to clear away the dust.

Indoor Units Lineup

Specifications of Indoor Units

F High Static Pressure Duct Type Indoor Unit

	Model		INV2-56HDP1S	INV2-63HDP15	INV2-71HDP15	INV2-80HDP1S	INV2-90HDP1S
	Cooling	.kW/	5.6	6.3	7.1	8.0	9.0
Capacity	Heating	XW.	6.3	7.1	8.0	9.0	10.0
Power supply		WPhHz		220-240/1/50 &	208-230/1/60		
Power consum	uption.	W	120	120	130	130	200
Airflow volume	CLARKS 1	m\h	1000/800/600	1000/800/600	1100/900/700	1100/900/700	1700/1450/1100
Actor vourse	(remot.)	CFM	590/471/355	590/471/355	650/530/410	650/530/410	1000/853/850
	Cooling	A	0.6	0.6	0.6	0.0	1.0
Rated Current?	Heating	A	0.6	0.6	0.6	0.6	1.0
	Water Heating	A	1	1	1	1	1
ESP	ESP			70/0~	100		
Sound pressur	e level(HML)	dB(A)	44/40/36	44/40/38	45/41/37	45/41/37	46/144/42
Connecting pipe	e Liquid	mm	Ø9.52	09.52	09.52	@9.52	09.52
diameter	Gas	mm	Φ15.9	@15.9	Ø15.9	@15.9	@15.9
Drain pipe	External dia.	mm	Ø25	Φ25	Φ25	Φ25	Φ25
- ALL PLOT	Thickness.	mm	2.5	2.5	2.5	2.5	2.5
Dimension	Outline	mm		1271x55	8x268		1229x775x290
(WxDxH)	Package	mm		1346x59	7x283		1338x877x305
Net weight/Gro	iss weight	kg	35/40	35/40	35/40	35/40	47/54
Loading	40' GP	set	192	192	192	192	128
	40' HQ	set	216	216	216	216	128

	Model		INV2-100HDP1S	INV2-112HDP15	INV2-125HDP15	INV2-140HDP15	INV2-160HDP1S	INV2-224HDP15	INV2-280HDP11
	Cooling	KW.	10.0	11.2	12.5	14.0	16.00	22.4	28.0
Capacity	Heating	KW .	11.2	12.5	14.0	16.0	18.00	25.0	31.0
Power supply		WPh/Hz		220-240/1/50 8	208-230/1/80		220-240/1/50/60	220-240/1/50 &	208-230/1/60
Power consum	ption	W	200	200	220	225	560	800	900
Artiov volume	COMPANY 1	m ¹ /b	1700/1450/1100	1700/1450/1100	2000/1550/1200	2000/1700/1400	3100	4000	4400
Annow yourne	(HOME)	CEM	1000/853/650	1000/853/650	1175/912/708	1175/1000/824	1824	2355	2590
	Cooling	A	1.0	1.0	1.0	1.0	4	4.1	4.0
Rated Current ²	Heating	A	1.0	1.0	1.0	1.0	4	4.1	4.6
Water Heating		A	1	1	1	1	1	1	1
ESP		Pa		70.0	-100		50	150/50~200	150/50~200
Sound pressure	e level(HML)	dB(A)	46/44/42	46/(44)42	48/45/42	48/46/44	55.0	54.0	55.0
Connecting pipe	E Liquid	mm	Ø9.52	Ø9.52	09.52	@9.52	φ9.52	09.52	09.52
dameter	Gas	mm	Φ15.9	Ø15.9	015.9	@15.9	φ19	022.2	022.2
Drain pipe	External dia.	mm	Ø25	025	Φ25	Φ25	\$30	Ф30	\$30
Crass pape	Thickness	mm	2.5	2.5	2.5	2.5	1.5	1.5	1.5
Dimension	Outline	mm		1229x7	75x290		1497x799x389	1483×791×385	1686x870x450
(WxDxH)	Package	mm		1338x8	77×305		1578x883x400	1758+883+470	1788x988x580
Net weight/Ciro	ns weight	kg	47/54	47/54	47/54	47/54	79/103	62/104	105/140
Loading	40° GP	set	128	128	128	128	75	65	52
	40° HQ	set	128	128	128	128	75	65	52

Low Static Pressure Duct Type Indoor Unit

	Model		INV2-22LD P15	INV2-25LD P1S	INV2-28LD P1S	INV2-32LD P15	INV2-36LD P1S
Capacity	Cooling	kW	2.2	2.5	2.8	3.2	3.6
Capacity	Heating	XW/	2.5	2.8	3.6	3.6	4.0
Power supply		WPh/Hz			220-240/1/50 & 208-230/1/60		
Power consum	ption	W	35	.35	35	43	43
		m\h	450/350/250	450/350/250	450/350/250	550/450/350	550/450/350
Airflow volume	hour!	CFM	265/208/147	285/208/147	265/206/147	325/265/206	325/265/208
	Cooling	A	0.2	0.2	0.2	0.2	0.2
Rated Current ²	Heating	A	0.2	0.2	0.2	0.2	0.2
	Water Heating	A	1	1	1	1	1
ESP		Pa			15/0-30		
Sound pressure	e level(HML)	dB(A)	31/28/25	31/28/25	31/28/25	32/30/27	32/30/27
Connecting pipe	Liquid	mm	Ø6.35	Ø6.35	Ø8.35	Ø6.35	Ø6.35
diameter	Gas	mm	Ø9.52	Ø9.52	09.52	@12.7	Φ12.7
Drain pipe	External dia.	mm	25	25	25	25	25
Const. Infree	Thickness	mm	2.5	2.5	2.5	2.5	2.5
Dimension	Outline	mm			700 x 615 x 200		
(WxDxH)	Package	mm			893×743×305		
Net weight/Gro	is weight	kg	22/27	22/27	22/27	22/28	22/28
Loading	40' GP	set	192	192	192	192	192
reserved	40° HQ	set	192	192	192	192	192

all in the	Cooling	KW'	4.0	4.5
Capacity	Heating	KW/	4.5	5.0
Power supply		WPh/Hz		
Power consum	ption	W	52	52
A left man in the second		m ¹ b	700/600/450	700/600/450
Airflow volume	prover)	CFM	410/355/265	410/355/265
	Cooling	A.	0.5	0.3
Rated Current ²	Heating	Α.	0.3	0.3
	Water Heating	Α.	1	1
ESP		Pa		
Sound pressure	(JMH) (evel)	dB(A)	33/31/28	33/31/28
Connecting pipe	Liquid	mm	¢6.35	Ø6.35
kameter	Gas	mm	Ø12.7	@12.7
Drain pipe	External dia.	mm	25	25
Crain pipe	Thickness	mm	25	2.5

	Model		INV2-40LD P18	INV2-45LD P1S	INV2-50LD P15	INV2-56LD P15	INV2-63LD P18
Capacity	Cooling	kW	4.0	4.5	5,0	5.6	6.3
Capacity	Heating	- KW	4.5	5.0	5.6	6.5	7.1
Power supply		WPh/Hz			220-240/1/50 & 208-230/1/90)	
Power consum	ption	W	52	52	52	99	99
Airflow volume		m ¹ /b	700/600/450	700/600/450	700/600/450	1000/800/600	1000/800/600
Antow vorume	(HIMPL)	CFM	410/355/265	410/355/265	410/355/265	590/471/355	590/471/355
	Cooling	Α.	0.5	0.3	0.3	0.5	0.5
Rated Current ²	Heating	A.	0.3	0.3	0.3	0.5	0.5
	Water Heating	Α.	1	1	1	1	7
ESP	ESP				15/0~30		
Sound pressure	e level(HMML)	dB(A)	33/31/28	33/31/28	33/31/28	35/33/30	35/33/30
Connecting pipe	Liquid	mm	Ø8.35	Ø6.35	Ø6.35	Ø9.52	Ø0.52
diameter	Gas	mm	Ø12.7	@12.7	Ø12.7	@15.9	@15.9
Drain pipe	External dia.	mm	25	25	25	25	25
or an i popo	Thickness	mm	2.5	2.5	2.5	2.5	2.5
Dimension	Outline	mm		900 x 615 x 200		1100 x	615 x 200
(WxDxH)	Package	mm		1123x743x305		1323x	743x305
Net weight/Gro	as weight	kg	27/33	27/33	27/33	31/38	31/38
Loading	40' GP	set	192	192	102	162	162
conversely.	40° HQ	set	192	192	192	162	162

	Model		INV2-71LD P15	INV2-80LD P15	INV2-90LD P15	INV2-100LD P15	INV2-112LD P15	INV2-125LD P15	INV2-140LD P15
Connector	Cooling		7.1	8.0	9.0	10.0	11.2	12.5	14.0
Capacity	Heating	kW	8.0	9.0	10.0	11.2	12.5	14.0	16.0
Power supply		WPh/Hz			220-	240/1/50 & 208-230/	1/60		
Pover consum	ption .	W	105	140	209	209	209	230	230
		m ³ h	1000/800/800	1100/1000/800	1500/1250/950	1500/1350/1000	1700/1500/1100	2000/1500/1150	2000/1500/1150
Airflow volume	(HINE)	CFM	590/471/355	650/590/471	885/736/599	885/795/590	1000/885/650	1175/885/677	1175/885/677
	Cooling	A	0.5	0.7	1.0	1.0	1.0	1.1	1.1
Rated Current ²	Heating	A.	0.5	0.7	1.0	1.0	1.0	1.1	1.1
	Water Heating	Α.	1	1	1	1	1	1	1
SP		Pa				30/0-50			
Sound pressure	e level(HML)	dB(A)	35/33/30	36/34/31	40/38/32	40/36/32	40/36/32	42/40/37	42/40/37
Connecting pipe	Liquid	mm	Φ9.52	Ø9.52	09.52	09.52	Ø9.52	09.52	09.52
diameter	Gas	mm	Φ15.9	Φ15.9	Ø15.9	©15.9	Φ15.9	Ø15.9	@15.9
Drain pipe	External dia.	mm	25	25	25	25	25	25	25
Commit Deliver	Thickness	mm	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Dimension	Outline	mm	1200 x 6	55 x 260			1340 x 65	55 x 260	
(WxDxH)	Package	mm	1448x8	58x315			1591x80	31x330	
Net weight/Gro	ss weight	kg	40/47	40/47	46/55	46/55	46/55	47/58	47/56
Loading	40' GP	set	.96	96	78	78	78	78	78
Transmit .	40' HQ	set	96	96	78	78	78	78	78

Slim Duct Type Indoor Unit

	Model		INV2-225D15*	INV2-255D15*	INV2-285D15*	INV2-325D15*	INV2-365D15*
Councile :	Cooling	kW	2.2	2.5	2.8	3.2	3.6
Capacity	Heating	kW.	2.5	2.8	3.2	3.6	4.0
Power supply		WPh/Hz			220-240/1/50 & 208-230/1/60	0	
Power consum	ption	W.	25	25	25	30	.30
Airfow volume		m ⁱ th	450/400/320	450/400/320	450/400/320	550/450/340	550/450/340
Amore volume	Pesers	CFM	265/235/188	285/235/188	265/235/188	324/265/200	324/265/200
	Cooling	A	0.2	0.2	0.2	0.3	0.3
Rated Current ²	Heating	A.	0.2	0.2	0.2	0.3	0.3
	Water Heating	A	1	1	1	1	1
ESP		Pa			0/15		
Sound pressure	e level(HML)	dB(A)	30/28/22	30/28/22	30/28/22	31/29/25	31/29/25
Connecting pipe	Liquid	mm	Ø6.35	Ø8.35	Ø6.35	Ø6.35	Ø6,35
dameter	Gas	mm	Ø9.52	Φ9.52	@9.52	Ø9.52	Φ12.7
Drain pipe	External dia.	mm	25	25	25	25	25
Come pape	Thickness	mm	2.5	2.5	2.5	2.5	2.5
Dimension	Outline	mm			710x450x200		
(W/xDxH)	Package	mm			1003x551x285		
Net weight/Gro	ss weight	kg	18.5/22	18.5/22	18.5/22	19,5/23	19.5/23
Loading	40° GP	set	352	352	352	352	352
and the second s	40° HQ	set	352	352	352	352	352

	Model		INV2-405D15*	INV2-455D15*	INV2-505D15*	INV2-565D15*	INV2-63SD15*	INV2-725D15
Camanha	Cooling	KW/	4.0	4.5	5.0	5.6	0.3	7.2
Capacity	Heating	kW	4.5	5.0	5.6	6.3	7.0	8.0
Power supply		WPh/Hz			220-240/1/50 8	208-230/1/60		
Power consume	tion	W	25	35	35	45	45	50
		m/p	750/660/540	750/060/540	750/660/540	850/700/610	850/700/610	1100/800/640
Airflow volume(HUMPL)	CFM	441/388/318	441/388/318	441/388/318	500/412/350	500/412/359	647/471/377
	Cooling	A	0.3	0.3	0.3	0.3	0.3	0.5
Rated Current ²	Heating	A	0.3	0.3	0.3	0.3	0.3	0.5
	Water Heating	A	1	1	1	1	1	7
ESP		Pa			0/1	15		
Sound pressure	level(H/ML)	dB(A)	33/30/27	33/30/27	33/30/27	35/33/29	35/33/29	37/34/30
Connecting pipe	Liquid	1011	Ø6.35	Ø6.35	Ø6.35	09.52	Ø9.52	Φ0.52
Sameler	Gas	mm	@12.7	@12.7	Ø12.7	@15.9	015.9	@15.9
Drain pipe	External dia	mm	25	25	25	25	25	25
oraan pipe	Thickness	mm	2.5	2.5	2.5	2.5	2.5	2.5
Dimension	Outline	mm		1010x45	50x200		1010x450x200	1310x450x200
(WxDxH)	Package	mm		1303×55	51x285		1303x551x285	1603x551x285
Net weight/Gron	s weight	kg	23.5/28	23.5/28	23.5/28	24.5/29	24.5/29	30.5/36
oading	40° G.P	set	288	288	288	288	288	224
Concerning	40° HQ	set	288	288	288	288	288	224

* This series is without water pump.

4-way Cassette Indoor Unit

	M	odel		INV2-28FC15	INV2-36FC1S	INV2-45FC15	INV2-SOFC1S	INV2-SEFC1S	INV2-63FC1S	INV2-71FC1S
		Cooling	kW.	2.8	3.6	4.5	5.0	5.6	6.3	7.1
Cepecity		Heating	KW	3.2	4.0	5.0	5.6	6.3	7.1	8.0
Power supp	ply .		VPhHz			220-24	0/1/50 & 208-230/1/	00		
Power cons	sumption		W	48	48	48	50	59	50	68
Airflow volume(H/MIL)			m ³ th	750/650/550	750/650/550	750/650/550	830/650/550	1000/900/750	1000/900/750	1180/950/850
			CFM	440/383/325	440/383/325	440/383/325	490/383/325	590/530/440	590/530/440	695/559/550
		Cooling	A	0.2	0.2	0.2	0.2	0.3	0.3	0.3
Rated Curre	ent ²	Heating	A	0.2	0.2	0.2	0.2	0.3	0.3	0.3
		Water Heating	A	1	1	1	1	1	1	1
Sound pressure level(HM/L)		(L)	dB(A)	38/34/31	36/34/31	36/34/31	36/34/31	37/35/32	37/35/32	38/36/33
Connecting	pipe	Liquid	101/10	Ø6.35	Ø6.35	46.35	Ø6.35	\$9.52	49.52	Φ0.52
Sameter		Gas	mm.	Ø9.52	Φ12.7	012.7	012.7	@15.9	@15.9	@15.9
Drain pipe		External dia.	mint	25	25	25	25	25	25	25
orant pipe		Thickness	mm	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	Dimension	Outline	mm	840x840x190	840x840x190	840x840x190	840x840x190	840x840x240	840x840x240	840x840x240
Main Body	(WixDxH)	Package	men	963x963x272	963x963x272	963x963x272	963x963x272	963x963x325	963x963x325	963x963x325
	Net weight/G	iross weight	kg	22.5/29.5	22.5/29.5	22.5/29.5	22.5/29.5	28.5/34.5	26.5/34.5	26.5/34.5
	Dimension	Outline	mm	950x950x85	950x950x85	950x950x85	950x950x65	950x950x85	950x950x85	950x950x65
Panel	(WxDxH)	Package	mm	1033x1038x133	1033x1038x133	1033x1038x133	1033x1038x133	1033x1038x133	1033x1038x133	1033x1038x133
Net weight/G		iross weight	kg	7/11	7/11	7/11	7/11	7/11	7/11	7/11
oading out	antity	40'GP	set	167	167	167	167	140	140	140
and day		40HQ	541	171	171	171	171	156	156	158

	M	odel		INV2-80FC1S	INV2-90FC1S	INV2-100FC15	INV2-112FC1S	INV2-125FC15	INV2-140FC15	INV2-160FC15
		Cooling	kW.	8.0	9.0	10.0	11.2	12.5	14.0	16.0
Capacity		Heating	kW	9.0	10.0	11.2	12.5	14.0	16,0	17.5
Power supp	ly.		VPhHz		229-240/1/50 & 208-230/1/60					
Power cons	umption		W	68	96	98	110	110	110	130
	Comments.		m ³ h	1180/950/850	1500/1350/1100	1500/1350/1100	1700/1400/1100	1000/1500/1150	1860/1500/1150	2100/1700/1400
Airflow volu	me(remer)		CFM	695/559/550	880/795/650	880/795/650	1000/824/650	1095/880/677	1005/880/677	1235/1000/824
		Cooling	A	0.3	0.4	0.4	0.5	0.5	0.5	0.6
Rated Currer	nt ²	Heating	A	0.3	0,4	0.4	0.5	0.5	0.5	0.6
		Water Heating	A	- N.	· · · · · · · · · · · · · · · · · · ·	1.	1	1	1	1
Sound pressure level(HM/L)		/L)	dB(A)	38/36/33	40/37/35	40/37/35	41/38/36	43/41/38	43/41/38	47)44/42
Connecting	pipe	Liquid	mm	Ø9.52	Ø9.52	Ø9.52	Ø9.52	Ø9.52	Ø9.52	@9.52
dameter		Gas	mm	Φ15.9	@15.9	@15.9	Φ15.9	@15.9	@15.9	@19.05
Drain pipe		External dia.	mm	25	25	25	25	25	25	25
oran pipe.		Thickness	intre .	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	Dimension	Outline	mm	840x840x240	840x840x320	840x840x320	840x840x320	840x840x320	840x840x320	010-010-203
Main Body	(WxDxH)	Package	reare.	963x963x325	963x963x409	963x963x409	963x963x409	963x963x409	963x963x409	1023-903-375
	Net weight/G	iross weight	kg	26.5/34.5	32.5/40.0	32.5/40.0	32.5/40.0	32.5/40.0	32.540.0	46.5/56.5
	Dimension	Outline	miget .	950x950x65	950x950x85	950x950x85	950x950x65	950x950x65	950x950x65	1040x1040x65
Panel	(WxDxH)	Package	mire	1033x1038x133	1033x1038x133	1033x1038x133	1033x1038x133	1033x1038x133	1033±1038±133	1137x1137x140
	Net weight/G	iross weight	kg.	7/11	7/11	7/11	7/11	7/11	7/11	7.5/11.5
Loading out	antity	40'GP	set	140	104	104	104	104	104	144
	1000	40'HQ	set	158	119	119	119	519	119	144

Compact 4-way Cassette Indoor Unit

	M	sdel		INV2-22FCC1S	INV2-28FCC18	INV2-36FCC1S	INV2-45FCC18	INV2-SEFCC1S	INV2-56FCC11
		Cooling	- kW	2.2	2.8	3.6	4.5	5	5.6
Capacity		Heating	kW	2.5	3.2	4	5	5.6	6.3
Power supp	ly:		V/PhHz			220-240/1/50 &	208-230/1/60		
ower cons	umption		W	35	35	35	45	45	45
	and the man is		mith	600/500/400	600/500/400	600/500/400	700/600/480	700/600/480	700/600/480
union you	me(HML)		CFM	355/295/235	355/295/235	355/295/235	410/355/283	410/355/283	410/355/283
		Cooling	A	0.4	0.4	0.4	0.5	0.5	0.5
Rated Curre	nt ²	Heating	A.	0.4	0.4	0.4	0.5	0.5	0.5
		Water Heating	A	1	1	1	1	1	1
iound pres	sure level/HM	L)	dB(A)	46/39/35	46/39/35	46/39/35	47/43/38	47/43/38	47:43/38
Connecting	pipe	Liquid	mm	Ø6.35	Ф8.35	Ø6.35	Ø6.35	\$6.35	49.52
iameter		Gas	nm	Φ9.52	Φ9.52	Φ12.7	\$12.7	¢12.7	Ø15.9
Irain pipe		External dia.	mm	25	25	25	25	25	25
state before		Thickness	mm	2.5	2.5	2.5	2.5	2.5	2.5
	Dimension	Outline	mm	590×590×240	590x590x240	590×590×240	596x590x240	590x590x240	590x590x240
Aain Body	(WorDsH)	Package	mm	773-733-300	773~733~300	733×733×300	733×733×300	733x733x300	733x733x300
	Net weight/G	iross weight	kg	20.5/25.5	20.5/25.5	20.5/25.5	20.5/25.5	20.5/25.5	20.5/25.5
	Dimension	Outline	mm	650x650x50	650x850x50	650x850x50	650x650x50	650x650x50	650x650x50
Panel	(WorDxH)	Package	mm	763x763x105	763x763x105	763x783x105	763x763x105	783x763x105	763x763x105
	Net weight/G	inoss weight	kg.	3.5/5.0	3.5/5.0	3.5/5.0	3.550	3.5/5.0	3.5/5.0
.oeding qu	unity.	40'GP	set	267	267	267	267	267	267
and the second star		40'HQ	set	288	288	288	288	288	288

2-way Cassette Indoor Unit

1.	Ma	odel		INV2-28DC 15	INV2-36DC 15	INV2-45DC 15	INV2-50D/C 15	INV2-56DC 15	INV2-63DC 15	INV2-71DC 1
100000		Cooling	kW.	2.8	3,6	4.5	5.0	5.6	6.3	7.1
Capacity		Heating	kW	3.2	4.0	5.0	5.6	6.3	7,1	8.0
Power supp	ly:		WPh/Hz			220-2	40/1/50 & 208-230/1	1/60		
ower cons	umption		W	55.0	55.0	55.0	55.0	103.0	103.0	103.0
1.			mith	830/600/530	830/500/530	830/600/530	830/600/530	1100/820/760	1100/820/760	1100/820/760
untew volu	me(HML)		CFM	490/355/312	490/355/312	490/355/312	490/355/312	650/483/647	650/483/647	650/483/647
		Cooling	A	0.3	0.3	0.3	0.3	0.7	0.7	0.7
Rated Curre	nt ²	Heating	A	0.3	0.3	0.3	0.3	0.7	0.7	0.7
		Water Heating	A	1		1	- I	1	1	1
Sound press	sure level(H/M)	0	dB(A)	35/33/31	35/33/31	35/33/31	35/33/31	39/37/35	39/37/35	39/37/35
Connecting	pipe	Liquid	mm	Ø6.35	Ø8.35	Ø8.35	Ø6.35	09.52	Ø9.52	Ø9.52
diameter		Gas	enm	Ø9.52	Φ12.7	Φ12.7	¢12.7	Φ15.9	Φ15.9	Φ15.9
-		External dia	mm	25	25	25	25	25	25	25
Orain pipe		Thickness	enen.	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	Dimension	Outine	animi .	1200x520x315	1200x520x315	1200x520x315	1200x520x315	1200x520x315	1200x520x315	1200x520x315
Vain Body	(WxDxH)	Package	1000	1520x655x415	1520x655x415	1520x855x415	1520x655x415	1520x655x415	1520x655x415	1520x855x415
	Net weight/G	ross weight	kg	40.5/52.5	40.5/52.5	40.5/52.5	40.5/52.5	43.0/55.0	43.0/55.0	43.055.0
	Dimension	Outline	1000	1443x630x33	1443x630x33	1443x630x33	1443x630x33	1443x630x33	1443x630x33	1443x630x33
Panel	(WitzDodH)	Package	2105	1575x765x105	1575x765x105	1575x765x105	1575x765x105	1575x765x105	1575x785x105	1575x765x105
	Net weight/G	trigiew aloni	XQ.	7.0/11.0	7.0/11.0	7.0/11.0	7.0/11.0	7.0/11.0	7.0/11.0	7.0/11.0
.oading qui	antity	40'GP	set	101	101	101	101	101	101	101
and the second second		40'HQ	set.	115	115	115	115	115	115	115

1-way Cassette Indoor Unit 50/60 Hz

		odel		INV2-22SC1S	INV2-26SC1S	INV2-36SC1S	INV2-455/C1S	INV2-50SC15
ALCONO.		Cooling	. kw	2.2	2.8	3.6	4.5	5.0
Capacity		Heating	kW	2.5	3.2	4.0	5.0	5.6
Power supp	ly .		WPh/Hz		2	20-240/1/50 & 208-230/1/6	0	
Power cons	umption		W	30	- 30	30	45	45
	NAME OF T		mih	600/500/450	800/500/450	600/500/450	830/600/500	830/600/500
Airflow volu	melanar'		CFM	355/295/265	355/295/265	355/295/265	490/355/295	490/355/295
		Cooling	A,	0.2	0.2	0.2	0.3	0.3
Rated Curre	nť	Heating	A	0.2	0.2	0.2	0.3	0.3
		Water Heating	A	I	1	1	1	1.
Sound press	sure level(H/M	(L)	dB(A)	36/32/28	36/32/28	36/32/28	40/35/30	40/35/30
Connecting p	pipe	Liquid	enen	Ø6.35	Ø6.35	Ø6.35	Ø6.35	@6.35
diameter		Gas	mm	99.52	@12.7	@12.7	@12.7	@12.7
Drain pipe		External dia.	enen	25	25	25	25	25
prain pipe		Thickness	1000	2.5	2.5	2,5	2.5	2.5
	Dimension	Outline	mm	\$87x385x178	987x385x178	987x385x178	987x385x178	087x385x178
Main Body	(WorDxH)	Package	1996	1307x501x310	1307x501x310	1307x501x310	1307x501x310	1307x501x310
	Net weight/G	kross weight	kg	20.0/27.0	20.0/27.0	20.0/27.0	21.0/28.5	21.0/28.5
	Dimension	Outline	mm	1200x460x55	1200x460x55	1200x460x55	1200x460x55	1200x460x55
Panel	(WorDxH)	Package	rom	1265x538x118	1265x538x118	1265x536x118	1265x538x118	1265x538x118
	Net weight/G	iross weight	ig	4.2/6.0	4.2/6.0	4.2/6.0	4.2/6.0	4.2/6.0
Loading gut	with	40'GP	set	138	138	138	138	138
and the second second	2.22	40'HQ	set	138	138	138	138	138

Wall-mounted Type Indoor Unit

	Model		INV2- 22W15*	INV2- 28W15*	INV2- 36W15*	INV2- 45W15*	INV2- 50W15*	INV2- 56W15*	INV2- 63W15*	8V2- 71W1S*
A	Cooling	- XW	2.2	2.8	3.6	4.5	5.0	5.6	0.3	7.1
Capacity	Heating	KW	2.5	3.2	4.0	5.0	5.8	0.3	7.0	7.5
Power supply		V/Ph/Hz				220-2	240/1/50			
Power consum	ption	W	50	50	60	60	60	70	70	70
Airflow volume	ALCONO. L	m'Yh	500/420/350	500/420/350	630/550/480	630/550/480	630/550/480	750/600/500	750/600/500	750/600/500
Autory souther	(march	CFM	294/247/208	294/247/208	371/324/282	371/324/282	371/324/282	441/353/294	441/353/294	441/353/294
	Cooling	A.	0.2	0.2	0.31	0.31	0.31	0.31	0.31	0.31
Rated Current ²	Heating	A	0.2	0.2	0.31	0.31	0.31	0.31	0.31	0.31
	Water Heating	Α.	1	1	- T -	100	1	7	1	1
Sound pressure	e level(H/M/L)	dB(A).	38/34/30	38/34/30	4441/38	44/41/38	44/41/38	44/41/38	44/41/38	44/41/38
Connecting pipe	e Liquid	anm	96.35	Ø6.35	Ø6.35	Ø6.35	Φ6.35	09.52	Φ9.52	09.52
diameter	Gas	mm	09.52	Φ9.52	Φ12.7	@12.7	Φ12.7	015.9	@15.9	@15.9
Drain pipe	External dia.	mm	Φ20	Φ20	\$20	Φ20	920	\$30	Ø30	@30
Common pages	Thickness	mm	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Dimension	Outline	mm	843x1	80x275		940x200x298			1008x221x319	
(WorDwH)	Package	11111	973x25	58×370		1068x288x395			1131x398x328	
Net weight/Gro	ss weight	kg	10/12.5	10/12.5	12.5/15.5	12.5/15.5	12.5/15.5	15/18.5	15/18,5	15/18.5
Loading	40' GP	set	702	702	557	557	557	441	. 441	441
	40° HQ	set	819	819	624	624	624	503	503	503

Note . * This series is without water pump.

Floor Ceiling Type Indoor Unit

	Model		INV2- 28K15	INV2- 36K15	INV2- 50K15	INV2- 63K15	INV2- 71K15	INV2- 90K15	INV2- 112K15	INV2- 125K15	INV2- 140K15
	Cooling	XW	2.8	3.6	5.0	6.3	7.1	9.0	11.2	12.5	14.0
Capacity	Heating	KW.	3.2	4.0	5.6	7.1	8.0	10.0	12.5	14.0	16.0
Power supply		V/PhHz				220-240/1/5	0 & 208-230/1/6/	0			
Power consump	stion .	W	40	40	50	75	75	140	180	160	160
Airfor volume		m'm	650/580/500	850/580/500	950/850/700	1400/1150/1000	1400/1150/1000	1600/1400/1200	2000/1800/1450	2000/1800/1450	2000/1800/145
Amore volume	Permit.)	CFM	380/341/294	380/341/294	560/500/410	825/677/590	825/677/590	940/824/705	1175/1059/853	1175/1059/853	1175/1059/853
	Cooling	A	0.2	0.2	0.25	0.38	0.38	0.7	0.95	0.95	0.95
Rated Current ²	Heating	A	0.2	0.2	0.25	0.38	0.38	0.7	0.95	0.95	0.95
	Water Heating	Α.	1.	- I	1	1.	l	7	1	1.	1
Sound pressure	ievel(HML)	dB(A)	36/34/32	36/34/32	42/38/33	44/42/29	44/42/39	50/47/43	51/47/42	52/49/45	52/49/45
Connecting pipe	Liquid	mm	Ø6.35	Ø8.35	Ø6.35	\$9.52	Ø0.52	Φ 9.52	Ø9.52	Φ9.52	Φ9.52
diameter	Gas	mm	Ø9.52	Φ12.7	@12.7	@15.9	@15.9	@15.9	@15.9	@15.9	@15.9
Drain pipe	External dia.	mm	017	Ø17	Φ17	@17	Φ17	017	017	@17	@17.
Conserption	Thickness	mm	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75
Dimension	Outline	mm		1220x700x225			1420x700x245		-	1700x700x245	
(WxDxH)	Package	mm		1343x823x315			1548x828x345			1828x828x345	
Net weight/Grow	us weight	kg	40/49	40/49	40/49	50/58	50/58	50/58	60/68	60/68	60/68
Loading	40' GP	set	145	145	145	90	90	90	84	84	84
crossing .	40' HQ	set	158	158	158	98	68	98	98	98	98

Console Indoor Unit

	Model		INV2-22C18	INV2-28C1S	INV2-36C1S	INV2-45C15	INV2-50C15
1000 (DOI: 10)	Cooling	kW	2.2	2.8	3.6	4.5	5.0
Capacity	Heating	kW	2.5	3.2	4.0	5.0	5.5
Power supply		WPhHz			20-240/1/50 & 208-230/1/60		
Power consump	stion	W	15	15	20	40	40
Airflow volume	LARGE 1	di'm	400/320/270	400/320/270	480/400/310	680/600/500	680/600/500
Access (Oiline)	reser.	CFM	235/188/159	235/188/159	282/235/182	400/353/294	400/353/294
	Cooling	A	0.15	0.15	0.15	0.15	0.15
Rated Current ²	Heating	A.	0.15	0.15	0.15	0.15	0.15
	Water Heating	A	1	1	1	1	. /
ESP		Pa	0	0	0	0	0
Sound pressure	level(HML)	dB(A)	38/33/27	38/33/27	40/37/32	46/43/39	46/43/39
Connecting pipe	Liquid	mm	6.35	6.35	6.35	8.35	6.35
diameter	Gas	mm	9.52	9.52	9.52	12.7	12.7
Drain pipe	External dia.	mm	17.2	17.2	17.2	17.2	17.2
and the second sec	Thickness	mm	1	1	1	1	1
Dimension	Outline	mm	700/215/600	700/215/600	700/215/600	700/215/600	700/215/600
(WxDxH)	Package	mm	780x285x682	780x285x682	780x285x682	780x285x682	780x285x682
Net weight/Gro	is weight	kg	16/19	16/19	16/19	16/19	16/19
Loading	40° GP	set	387	387	387	387	387
Constrained.	40° HQ	set	433	433	433	433	433

Floor Standing Type

	Model		INV2-100FS 15
Capacity	Cooling	kW	10
Capacity	Heating	kW	11
Power supply		V/Ph/Hz	
Power consum	ption	W	185
		en ⁵ th	1850/1600/1400
Airfow volume	(HIML)	CFM	1089/942/824
	Cooling	A	1.5
Rated Current ²	Heating	A	1.5
	Water Heating	A	1
ESP		Pa	0
Sound pressur	e level(HML)	dB(A)	50/48/48
Connecting pipe	Liquid	mm	9
dameter	Gas	mm	16
Drain pipe	External dia.	mm	31
Cran ppe	Thickness	mm	4.5
Dimension	Outine	eren.	1870x580x400
(WaDaH)	Package	mm	2083/738/545
Net weight/Gro	as weight	kg	54/74
Loading	40' GP	set .	67
Concerna	40' HQ	. set	67

Fresh Air Processing Indoor Unit

	Model		INV2-FAIR14015*	INV2-FAIR2241T*	INV2-FAIR2801T*	INV2-FAIR2801T-A*	INV2-FAIR4501T
	Cooling	kW	14.0	22.4	28.0	28.0	45.0
Capacity	Heating	. KW	10.0	16.0	20.0	20.0	32.0
Power supply		WPhHz.	220-240/1/50		380~415	3/50	
Power consum	ption	W	360	740	760	1060	1240
Airflow volume	ALCONT 1	m/m	1200	2000	2500	3000	4000
Aniow Volume	(PERFL)	CFM	705	1175	1470	1765	2355
	Cooling	A	1.82	1.32	1.36	1,89	2.22
Rated Current ²	Heating	A	1.82	1.32	1.36	1,89	2.22
	Water Heating	A.	1	1	1	1	1
ESP		Pa	150		200		
Sound pressure	e level(H/ML)	dB(A)	42	47	48	51	52
Connecting pipe	Liquid	1515	Ø9.52	09.52	Φ9.52	09.52	012.7
diameter	Gas	mm	@15.9	@19.05	Ø22.2	Ø22.2	028.6
Drain pipe	External dia.	inn	25	25	25	25	25
Contact Public	Thickness	mm	2.5	2.5	2.5	2.5	2.5
Dimension	Outline	mm	1463 x 758 x 300		1500 x 1000 x 500		1700 x 1100 x 650
(WxDxH)	Package	mm	1514x785x360		1840x1200x673		1890x1460x835
Net weight/Gro	ss weight	kg	63.5/71	130/182	134/188	134/168	208/268
Loading	40° OP	set	84.0	18.D	18.0	18.0	16.0
(contracting)	40° HQ	set	98.0	18.0	58.0	18.0	16.0

Note: * This series can be matched with INV2 (Top discharge outdoor unit)only.

	INV2-140FS 15	
	14	
	15	
220-240/1/50 & 208-230/1/60		
	185	
	1850/1600/1400	
	1089/942/824	
	1.5	
	1.5	
	1	
	0	
	50/48/46	
	9	
	18	
	31	
	4.5	
	1870x580x400	
	2063/738/545	
	57/77	
	67	
	67	

Control System

Smart Model Selection Software and Debugging Software

Model Selection Software

Inventor multi VRF selection software is a kind of advanced computer program for selecting models automatically in sales and project bidding. It integrates multi VRF selection logic and computer software to provide a user-friendly interactive interface, which is able to automatically recommend suitable models to user according to ambient condition of project and user's demand. It is applicable for INV2.

Flexible Setting of Project Design Conditions

When setting up a new model selection project, the information of customer, designer, unit series and working conditions, etc. can be set as relevant parameters of model selection, and then sent to data report for checking during project design.

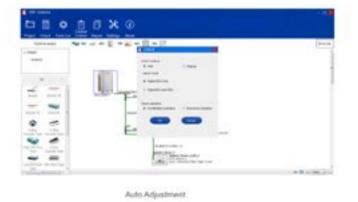
	And been all the second se
	The second secon
	Verified and the set of the set o
	The second secon
Correctional Contract	Line, Line,
oject Setting	Project Design Conditions

Accurate Recommendation of Indoor Unit and Outdoor Unit

When selecting indoor unit model with the software, you can use automatic recommendation way only by inputting the required air conditioning load and indoor unit series. Then the software will recommend the suitable indoor unit model automatically according to model selection logic. When selecting outdoor unit model, you can use automatic recommendation way directly to select the suitable outdoor unit model.

and taken	
Networks	
	Land (Jam)
	Confirmation

tions, beauty 22	and Allowers and Allowe	
anneal .W	and Annual Annual Contract Annual Inc.	-
	the st	
H	Annual Prof. Street, Concern	
	the standard hand hereiteraters	
	Annual III Annual III II	
44.479	www.horderacetalloomousellacteral	
-	Annual Social Data Strength Strength	
	Name (1997) at the second of t	
-	income in sub-database a	
- The States	Notariantia (
-	Annual and a second sec	
and an a	The statisticate of the second state	
-	1 waard and that	
17100		
all second second		
	Add New IDU (1)	- 10.21
E • 1	Add New IDU (1)	•
	Add New IDU (1)	100.00
	Add New IDU (1)	•
	Add New IDU (1)	•
	Add New IDU (1)	•
-	Add New IDU (1)	•
-	Add New IDU (1)	•
-	Add New IDU (1)	•
	Add New IDU (1)	•
-	Add New IDU (1)	•
1111	Add New IDU (1)	•
11 11 1	Add New IDU (1)	•
1111	Add New IDU (1)	•
1111	Add New IDU (1)	•


Free Modification of Selected Models

If you are not satisfied with the system recommended by the software, you can select or adjust indoor unit model by "Manual selection" function.

internet)	Terrar Anternation		- Inco
1111	• 11 16 1		
40	 ÷ .	Canada and C	
-			

System Adjustment

When reselection is needed due to major change of indoor unit, you can use "Check" function to adjust the selection automatically or manually."

Optional Controller Configuration and Electric System Configuration

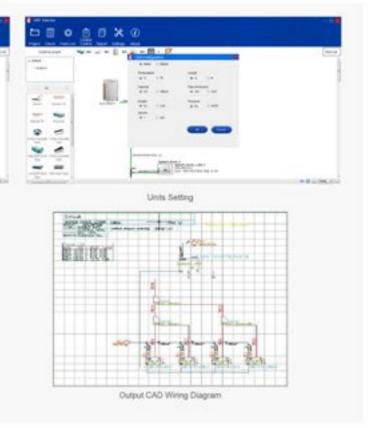
The software will offer controller model matched with the system. The user only needs to choose controller type and then the software will output the controller model into the report.

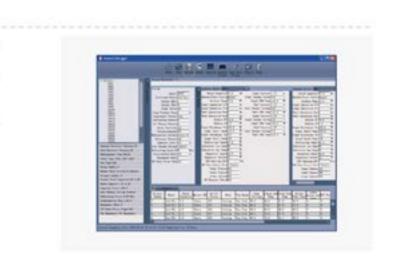
tannen W	A Distance of The second state of the second s	-
111		
		-

Optional Controller Configuration

Save Model Selection Project, Output Data Report and System Wiring Diagram

After finishing system selection and various system configurations, the user can save model selection project freely for future reference. Then the user can output relevant parameters of selected project in an excel form and output system wiring CAD diagram for reference in installation.

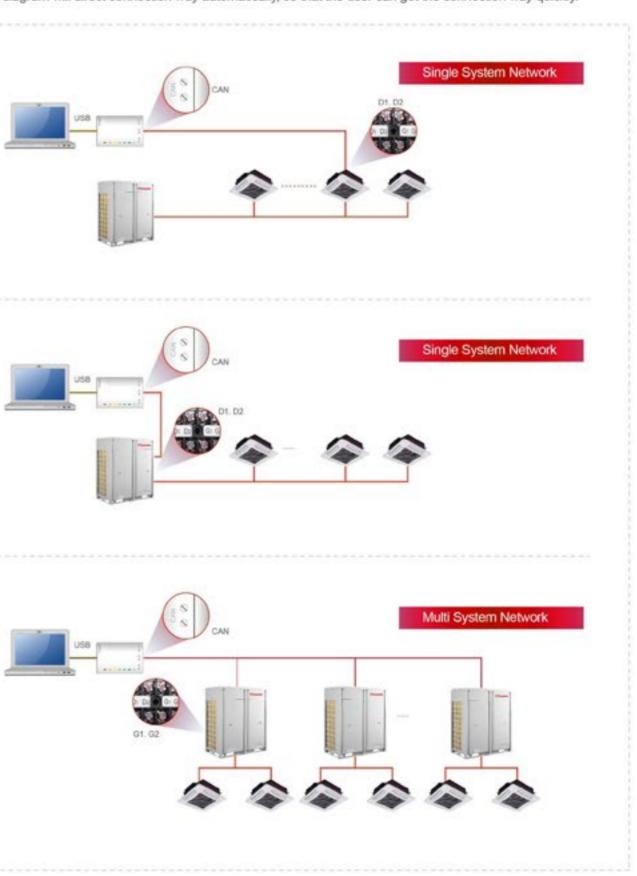

DEOBEXC ÷ -. . 4 0 and the local division of the Save Data Canada a 5 F 5 5 5 3 - 5 Part 1 Project Proposal and a state of the state Parameters Output in Excel Form


Intelligent Debugging Software

INV2 offers an intelligent debugging software to the end-users for faster construction needs.

Monitoring Functions

- · Fully control the operation status of each device of the system;
- · Hover the mouse over the parameter to display its remarks,
- · The online devices will be displayed in a tree structure:
- · Display the information of air conditioner in divided regions;
- Each display region can be moved or concealed;
- Display updated status of units in real time;


Control Functions

- · Control the operation of unit as you like;
- Comprehensive control of outdoor unit, indoor unit, water tank, hydro box, etc.;
- · Real-time display of current status or status after being controlled;
- · Both single control and group control are available.

Auto Direction of Connection Way

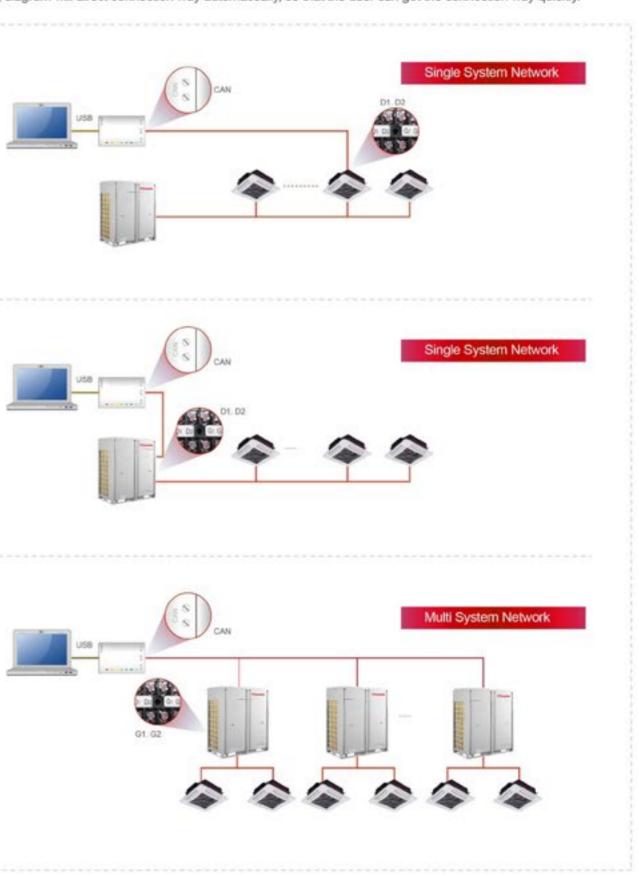
The wiring diagram will direct connection way automatically, so that the user can get the connection way quickly.

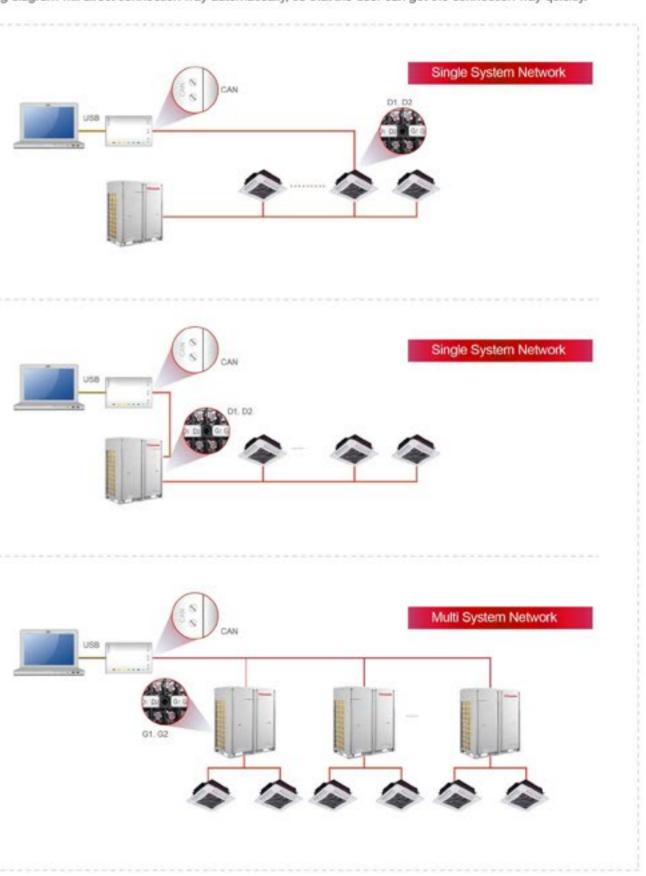
Project Debugging Functions

- · One-click and automatic project debugging;
- · Project debugging is arranged step by step from left to right;
- · Manual intervention and skipping of some debugging phases are available.
- · Green icons will be displayed for the items finishing debugging; red icons will be displayed for the items having debug exception; light yellow icons display debugging information;

-
and the state of t
and the second second
a stress of local of
e Bellerie
- 1995

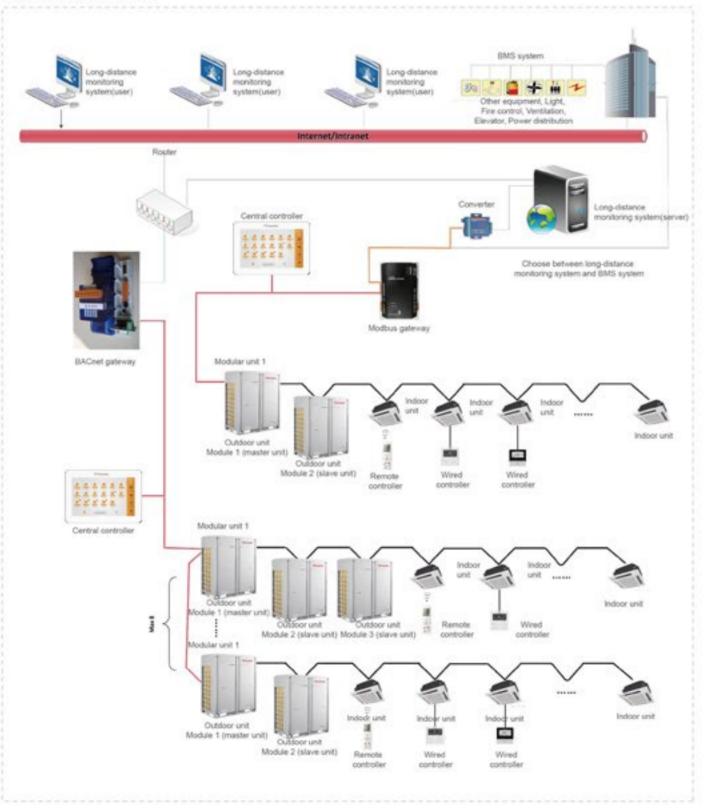
Auto Data-Saving Function


Data will be saved automatically. Database saving path can be changed or data document can be generated repeatedly.



USB Data Converter

Users can use USB data converter to freely convert CAN/HBS/RS485 data into USB data, achieving data interchange between computer and air conditioner.



Multiple Intelligent Remote Control Management

Inventor INV2 provides multiple intelligent controls in order to satisfy all demands. It can control both a room and a building at the same time.

Visualized Management

- · System has a map that can display air conditioners' locations in rooms and buildings.
- System is able to measure the status and number of air conditioners in different levels

Everyday Management

Setting for daily operation

a.Management in days/weeks/months/years b.Management in each unit c.Simple display for management

Other functions

a.Power on/off, modes, humidity, fan speed b.Waste of energy that may be caused by forgetting to turn off the air conditioner can be avoided

· Central management in groups

a.Free choices of dividing groups b.Central control over power on/off c.Central control over temperature d.Central control over modes e.Central control over user authority

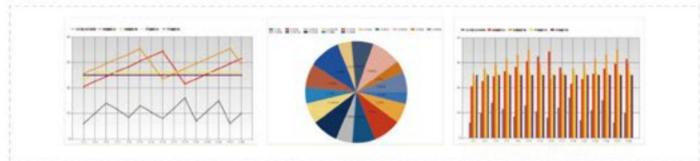
Authority Management

· Only for indoor units

a.Limited control over power on/off b.Limited control over temperature c.Limited control over modes

Statistics Analysis

Recording statistics


System can self generate graphs of statistics for easy management and analysis.

Recording errors

System can show the information of errors in charts and send alarms of errors through emails.

Recording operation

System can record users' daily operation.

Calculating Cost of Electricity

Auto calculation according to users

a. According to the operating time, modes, flow of refrigerant, humidity and other factors, system can calculate the cost of electricity for users in different locations.

b.Detailed information of bills and operation can be provided.

Energy Management

· Analysis of energy cost

- a.Air conditioners that cost much energy
- b.Air conditioners that are set in low temperature c.Air conditioners with bad cooling performance
- c.All conditioners with bad cooling performance

Energy saving

Limits on electricity

a.Analysis on the cost of electricity

b.Set the maximum cost of electricity and unit will be operating in limited conditions when the maximum number is reached.

c.System can remind users the cost of electricity during operation and give suggestions on energy saving.

Economic operation

System is able to operate under an energy-saving condition

VIP Management

System can provide independent and unique service to VIP users.

Ways to save energy based on the following aspects:

- a.Operating time
- b.Unit is on too early
- c.Unit is off too late
- d.Comfort
- e.Cost of electricity/cost of electricity per square meter

Wired Controller and Remote Controller

There are two kinds of controllers: wired controller and remote controller. The system provides various controls for users, such as cooling, heating, dehumidifying and fan etc., users can select it flexibly according to their own using methods.

Wired controller XK46

07	*0*	3
	88	8888
6.00	P.O. #19	
	states and strength in the local division of	second in succession in succession in the succession of the succes
		-
ENTERCANCE	SLEEP	FAN MODI
BIERCANCE	SLEEP	7AN MODI

- LCD with black background and white words; touch buttons;
- Clock can be displayed and set; 24 hours timer setting for on/off;
- 7 levels of fan speed, up & down swing and left&right swing;
- Can be switched in auto, cooling, dehumidifying, fan, heating, floor heating, 3D heating and space heating operation modes;
- Master and slave wired controllers can be set; simultaneous control over several IDUs is available;
- Available functions: sleep, ventilation, quiet/auto quiet, light, energy saving, auxiliary heating, drying, memory, low-temperature dehumidifying, absence in heating, controllable auxiliary heating in dehumidifying, filter cleaning reminder, etc.;
- Detect ambient temperature; receive infrared remote controller signal;
- With project parameters viewing and setting functions.

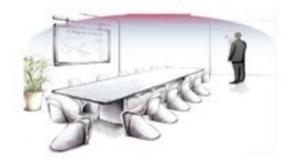
Remote controller YAP1F

Remote Controller YV1L1

Wired controller XK49 (For hotel)

- With simplified functions, mechanical buttons, back lighting LCD and convenient operation;
- Can be switched in auto, cooling, dehumidifying, fan and heating operation modes;
- Master and slave wired controllers can be set; simultaneous control over several IDUs is available;
- Detect ambient temperature; receive infrared remote controller signal;
- With system parameters viewing and setting functions;
- 7 levels of fan speed, up&down swing;
- Door control system can be connected.

- Can be switched in auto, cooling, dehumidifying, fan and heating operation modes;
- Besides turbo,6 levels of fan speed can be set;
- Available functions: child lock, drying, health, ventilation, turbo, sleep, light, absence, I-feel and timer;
- Clock display and indoor/outdoor ambient temperature viewing functions;
- Up & down swing and left & right swing.


- Back lighting LCD;
- Can be switched in auto, cooling, dehumidifying, fan, heating, floor heating, 3D heating and space heating operation modes;
- 7 levels of fan speed, up&down swing and left&right swing;
- Available functions: child lock, energy saving, drying, health, ventilation, quiet/auto quiet, sleep, light, absence, low-temperature dehumidifying, l-feel and timer;
- With clock display, system parameters viewing and setting functions.

- · Elegant appearance;
- High-resolution color LCD;
- Capacitive touch control; receive infrared remote controller signal;
- Various timing functions: three weekly timers and one countdown timer can be set simultaneously; mode, temperature and fan speed can be preset in weekly timer;
- Complete system functions; each function will be implemented in an individual page with interactive and humanized interface;
- Various personalized functions, e.g. setting brightness and backlight time;
- Sufficient viewing functions, e.g. viewing on/off status and after-sales service hot line.

 Single control of one unit Each indoor unit has an independent controller.

 Central control of several indoor units One wired controller can control as many as 16 indoor units.

· Multiple control of one unit

One indoor unit can be controlled by several wired controllers at different places.

Joint control of remote controller and wired controller

Users can control one unit with two types of controllers: a remote controller which is convenient and flexible; or a wired controller which includes every function of an air conditioner.

Smart Zone Controller and Central Controller

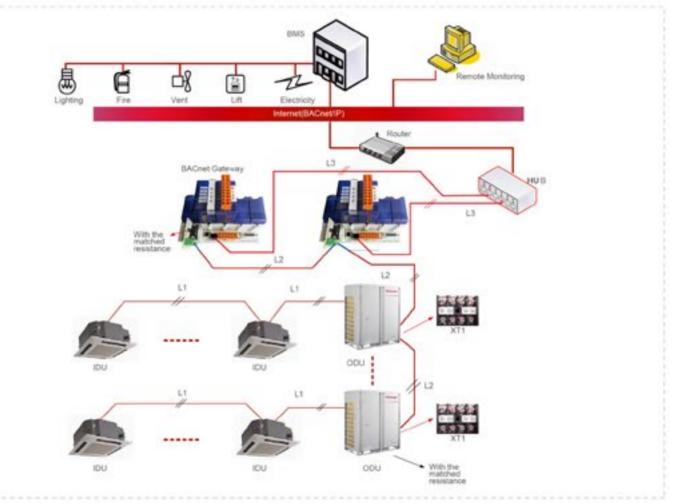
Smart zone controller CE53-24/F(C)

- 1280*800 high-resolution color LCD;
- 7" capacitive touch screen for easy operation;
- Shielding function of single unit, group and all IDUs (shielding on/off, mode, temp setting, etc.);

- With various functions: centralized control(control all indoor units), group management(support DIY grouping), schedule management(setting of several schedules) and single unit control(on/off, mode, temp setting, fan speed, quiet, swing control, etc.);
- Provide naming of indoor units, selection of icons and personalized settings(setting background, backlight, etc);
- Up to 32 units can be centrally controlled;
- Elegant and fashionable appearance;
- Embedded installation in wall with projecting thickness only of 11mm;
- Connectable with network of indoor units or outdoor units;
- Independent power supply in 110~240V wide voltage range;
- With project setting, parameter viewing, malfunction record and access management functions.

Central controller CE52-24/F(C)

		Sala Gala	9
			ł.
	"A" 'A"		
COLD CALD	the ter	-	

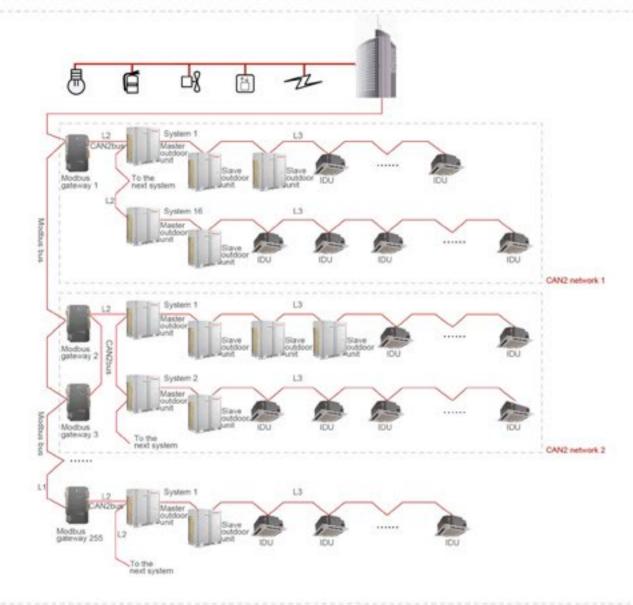

- 1280*800 high-resolution color LCD;
- 7" capacitive touch screen for easy operation;
- With project setting, parameter viewing, malfunction record and access management functions.

- With various functions: centralized control(control all indoor units), group management(support DIY grouping), schedule management(setting of several schedules) and single unit control(on/off, mode, temp setting, fan speed, quiet, swing control, etc.);
- Shielding function of single unit, group and all IDUs (shielding on/off, mode, temp setting, etc.);
- Provide naming of indoor units, selection of icons and personalized settings(setting background, backlight, etc);
- · Up to 128 units can be centrally controlled;
- Elegant and fashionable appearance;
- Embedded installation in wall with projecting thickness only of 11mm;
- Connectable with network of indoor units or outdoor units;
- Independent power supply in 110~240V wide voltage range;

BACnet Gateway

BACnet gateway kits MG30-24/D2(B) are intended to realize the data exchange between the air conditioning unit and BAS, and providing the standard BACnet/IP building interface and 8 I/O interfaces, one of which is the fire alarm signal interface. The status of the other 7 I/O interfaces is mapped to the specific objects of the BACnet/IP bus and can be defined by the user.

Applicable models: INV2 All DC Inverter Multi VRF System, INV2 DC Inverter Multi VRF System, INV2 DC Inverter Water Cooled Heat Pump Multi VRF System.


- International standard BACnet/IP interface, which has passed BTL certification;
- Real-time monitoring of unit operation status, e.g. on/off, mode, temperature;
- Real-time response to the control of unit (on/off, mode setting and speed setting, etc.) by monitoring software;
- Monitor unit errors;

- Lock unit operation statuses, directing at all control functions of unit itself or a certain setting function;
- Achieve cooling and heating temperature limitation functions;
- 8 DI/DO interfaces for receiving fire alarm signal and user's definition logic;
- Big storage capacity of unit operation data for 6 months.

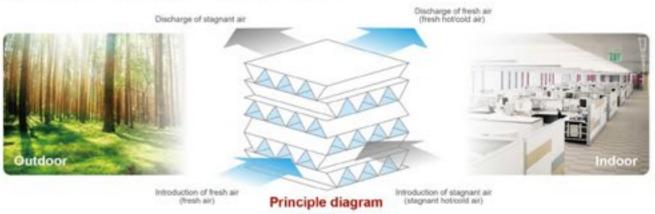
Modbus Gateway

Modbus Gateway provides INV2 system with the Modbus protocol interface when connecting to the Building Management System(BMS) in order to achieve central control and remote control over INV2 system by BMS.

Applicable models: INV2 All DC Inverter Multi VRF System, INV2 DC Inverter Multi VRF System, INV DC Inverter Water Cooled Heat Pump Multi VRF System.

- Real-time monitoring of unit operation status, e.g. on/off, mode, temperature;
- Real-time response to the control of unit (on/off, mode setting and speed setting, etc.) by monitoring software;
- Control all the units switches of on and off.
- Monitor unit errors;
- One Modbus bus can support up to 255 gateways. One Modbus gateway can support at most 16 outdoor units(up to 64 modular outdoor units) and 128 indoor units;

- Lock unit operation statuses, directing at all control functions of unit itself or a certain setting function;
- Linkage control, supporting 5 DI and 5 DO for receiving fire alarm signal and user's definition logic;
- CAN, RS485 communication ports are non-polar, convenient for construction wiring;
- Achieve cooling and heating temperature limitation functions;
- 100-240 VAC,50/60Hz wide voltage range, adapted to the power supply of each country and region.

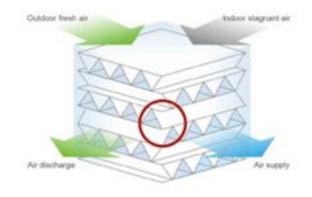

Control System Lineup

	ng system	Product	series	Cassette Type	(High ESP Low ESP Slim Ducted) Duct Type	Fresh Air Processing	Wall mounted Type	Floor Ceiling Type	Console Type	Floor Standing Type	Air Handk
Wireless Controller		YAP1F	M HERE	•	0	0	•	•	•	•	0
		VVIL1	100	0	0	0	0	0	0	0	0
Wired controller XX55		ХК45	1029	0	•	٠	0	0	0	0	
		XK49		0	0	0	0	0	0	0	0
		XX55	2018	0	0	0	0	0	0	0	0
		JS05(receiver)			0	0					
Centra	lized Controller	CE52-24/F(C)		0	0	0	0	0	0	0	0
Smart	Zone Controller	CE53-24/F(C)	tit	0	0	0	0	0	0	0	0
Long-distanc	e monitoring software	FE31-00/AD(BM)	1922	0	0	0	0	0	0	0	0
BMS	Communication module(modbus)	ME30-24/E4(M)		0	0	0	0	0	0	0	0
Accessories	GMV BACnet gateway (BACnet)	MG30-24/D2(B)	1	0	0	0	0	0	0	0	0
Other	Optoelectronic isolated converter	R5232-R5422485		0	0	0	0	0	0	0	0
modules	Optoelectronic isolated signal multiplier	R5-4221485		0	0	0	0	0	0	0	0

Note: • means standard, o means optional.

Adopt Advanced Heat Exchange Core

ERV adopts cross flow plate exchanger with air volume below 3000m3/h. Fresh air will be introduced and internal leakage is low, which effectively prevent pollution to fresh air.



Double-way Ventilation for Fresh Air

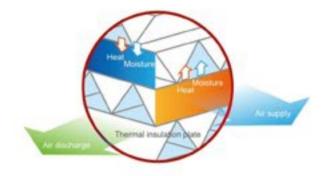
ERV can not only introduce lots of fresh air, but also discharge the stagnant air at the same time, which effectively minimizes the toxic air from the inner and other materials. The ventilation effect is very obvious, ensuring enough supply of fresh air to the indoor space.

No Cross Contamination for Ensuring Healthy Fresh Air

The unique cross-flow heat exchange valve sub-assy is adopted. There is only energy exchange between indoor air and outdoor air with little exchange of air, which effectively prevents cross contamination and "air-condition" disease.

Pretreatment of Fresh Air for Energy-saving

When fresh air is introduced, its temperature and humidity will be exchanged with the discharged warm air. As the fresh air is preheated and humidified, energy is saved and load of unit is reduced.


Energy Recovery Ventilation(ERV)

- Air flow: 350~3000m³/ h
- Energy Recovery Ventilation System can introduce the fresh air freely on the condition that all the windows closed or exhausted fan uninstalled. It can solve the problem of stagnant air effectively.

It is usually installed in the ceiling of corridor and supplies fresh air to each room through ducts.

nergu Rec

Control System Lineup

	Pro	duct series	ERV
Control sy	stem		0.01
Wred controller	Z5N151		•
Interface of the main board	BMS		•
Optoelectronic isolated converter	R5232- R5422485		0
Optoelectronic isolated signal multiplier	RS-422485		0

Note: • means standard, < means optional,

Note			

Note

INVENTOR GREECE 2, Thoukididou str., 145 65 Ag.Stefanos, Athens - Greece

INVENTOR ROMANIA Splaiul Independentei Street, no 17 101 Izvor Building, 4th entrance 5th floor, ap. 68, Area 5 050093, Bucharest - Romania

INVENTOR CHINA 2405 #3, Shunde Innovation & Tech Center, Ronggui, Shunde, Foshan, Guangdong, China

E-mail: export@inventor.ac Tel: +30211 3003326 Fax: +30211 3003333

www.inventorairconditioner.com